forked from phoenix/litellm-mirror
feat(groq/): add response_format support for groq
Closes https://github.com/BerriAI/litellm/issues/6845
This commit is contained in:
parent
d7f9999cef
commit
42beb618ae
10 changed files with 275 additions and 82 deletions
|
@ -2,6 +2,7 @@
|
|||
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
|
||||
"""
|
||||
|
||||
import json
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
|
@ -9,7 +10,12 @@ from pydantic import BaseModel
|
|||
|
||||
import litellm
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionAssistantMessage,
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
|
@ -108,3 +114,60 @@ class GroqChatConfig(OpenAIGPTConfig):
|
|||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _create_json_tool_call_for_response_format(
|
||||
self,
|
||||
json_schema: dict,
|
||||
):
|
||||
"""
|
||||
Handles creating a tool call for getting responses in JSON format.
|
||||
|
||||
Args:
|
||||
json_schema (Optional[dict]): The JSON schema the response should be in
|
||||
|
||||
Returns:
|
||||
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
|
||||
"""
|
||||
return ChatCompletionToolParam(
|
||||
type="function",
|
||||
function=ChatCompletionToolParamFunctionChunk(
|
||||
name="json_tool_call",
|
||||
parameters=json_schema,
|
||||
),
|
||||
)
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool = False,
|
||||
) -> dict:
|
||||
_response_format = non_default_params.get("response_format")
|
||||
if _response_format is not None and isinstance(_response_format, dict):
|
||||
json_schema: Optional[dict] = None
|
||||
if "response_schema" in _response_format:
|
||||
json_schema = _response_format["response_schema"]
|
||||
elif "json_schema" in _response_format:
|
||||
json_schema = _response_format["json_schema"]["schema"]
|
||||
"""
|
||||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||
- You usually want to provide a single tool
|
||||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||
"""
|
||||
if json_schema is not None:
|
||||
_tool_choice = {
|
||||
"type": "function",
|
||||
"function": {"name": "json_tool_call"},
|
||||
}
|
||||
_tool = self._create_json_tool_call_for_response_format(
|
||||
json_schema=json_schema,
|
||||
)
|
||||
optional_params["tools"] = [_tool]
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
optional_params["json_mode"] = True
|
||||
non_default_params.pop("response_format", None)
|
||||
return super().map_openai_params(
|
||||
non_default_params, optional_params, model, drop_params
|
||||
)
|
||||
|
|
|
@ -39,6 +39,7 @@ from litellm.utils import (
|
|||
)
|
||||
|
||||
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
||||
from .transformation import OpenAILikeChatConfig
|
||||
|
||||
|
||||
async def make_call(
|
||||
|
@ -190,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
logger_fn=None,
|
||||
headers={},
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
json_mode: bool = False,
|
||||
) -> ModelResponse:
|
||||
if timeout is None:
|
||||
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
@ -202,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
|
@ -214,19 +214,22 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
response = ModelResponse(**response_json)
|
||||
|
||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
||||
|
||||
if base_model is not None:
|
||||
response._hidden_params["model"] = base_model
|
||||
return response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
|
@ -268,6 +271,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
|
||||
stream: bool = optional_params.pop("stream", None) or False
|
||||
extra_body = optional_params.pop("extra_body", {})
|
||||
json_mode = optional_params.pop("json_mode", None)
|
||||
if not fake_stream:
|
||||
optional_params["stream"] = stream
|
||||
|
||||
|
@ -390,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
)
|
||||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
response = ModelResponse(**response_json)
|
||||
|
||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
||||
|
||||
if base_model is not None:
|
||||
response._hidden_params["model"] = base_model
|
||||
|
||||
return response
|
||||
|
|
98
litellm/llms/openai_like/chat/transformation.py
Normal file
98
litellm/llms/openai_like/chat/transformation.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
"""
|
||||
OpenAI-like chat completion transformation
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
|
||||
class OpenAILikeChatConfig(OpenAIGPTConfig):
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
|
||||
dynamic_api_key = (
|
||||
api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
@staticmethod
|
||||
def _convert_tool_response_to_message(
|
||||
message: ChatCompletionAssistantMessage, json_mode: bool
|
||||
) -> ChatCompletionAssistantMessage:
|
||||
"""
|
||||
if json_mode is true, convert the returned tool call response to a content with json str
|
||||
|
||||
e.g. input:
|
||||
|
||||
{"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
|
||||
|
||||
output:
|
||||
|
||||
{"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
|
||||
"""
|
||||
if not json_mode:
|
||||
return message
|
||||
|
||||
_tool_calls = message.get("tool_calls")
|
||||
|
||||
if _tool_calls is None or len(_tool_calls) != 1:
|
||||
return message
|
||||
|
||||
message["content"] = _tool_calls[0]["function"].get("arguments") or ""
|
||||
message["tool_calls"] = None
|
||||
|
||||
return message
|
||||
|
||||
@staticmethod
|
||||
def _transform_response(
|
||||
model: str,
|
||||
response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
stream: bool,
|
||||
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
|
||||
optional_params: dict,
|
||||
api_key: Optional[str],
|
||||
data: Union[dict, str],
|
||||
messages: List,
|
||||
print_verbose,
|
||||
encoding,
|
||||
json_mode: bool,
|
||||
custom_llm_provider: str,
|
||||
base_model: Optional[str],
|
||||
) -> ModelResponse:
|
||||
response_json = response.json()
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
if json_mode:
|
||||
for choice in response_json["choices"]:
|
||||
message = OpenAILikeChatConfig._convert_tool_response_to_message(
|
||||
choice.get("message"), json_mode
|
||||
)
|
||||
choice["message"] = message
|
||||
|
||||
returned_response = ModelResponse(**response_json)
|
||||
|
||||
returned_response.model = (
|
||||
custom_llm_provider + "/" + (returned_response.model or "")
|
||||
)
|
||||
|
||||
if base_model is not None:
|
||||
returned_response._hidden_params["model"] = base_model
|
||||
return returned_response
|
|
@ -1495,7 +1495,6 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
timeout=timeout, # type: ignore
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
client=client, # pass AsyncOpenAI, OpenAI client
|
||||
organization=organization,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
encoding=encoding,
|
||||
)
|
||||
|
|
|
@ -1745,7 +1745,8 @@
|
|||
"output_cost_per_token": 0.00000080,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-8b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1755,7 +1756,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-70b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1765,7 +1767,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-8b-instant": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1775,7 +1778,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-70b-versatile": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1785,7 +1789,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-405b-reasoning": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1795,7 +1800,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/mixtral-8x7b-32768": {
|
||||
"max_tokens": 32768,
|
||||
|
@ -1805,7 +1811,8 @@
|
|||
"output_cost_per_token": 0.00000024,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma-7b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1815,7 +1822,8 @@
|
|||
"output_cost_per_token": 0.00000007,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma2-9b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1825,7 +1833,8 @@
|
|||
"output_cost_per_token": 0.00000020,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1835,7 +1844,8 @@
|
|||
"output_cost_per_token": 0.00000089,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1845,7 +1855,8 @@
|
|||
"output_cost_per_token": 0.00000019,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"cerebras/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
|
|
|
@ -1739,7 +1739,6 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
|||
|
||||
Does not raise error. Defaults to 'False'. Outputs logging.error.
|
||||
"""
|
||||
try:
|
||||
## GET LLM PROVIDER ##
|
||||
model, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -1748,6 +1747,7 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
|||
if custom_llm_provider == "predibase": # predibase supports this globally
|
||||
return True
|
||||
|
||||
try:
|
||||
## GET MODEL INFO
|
||||
model_info = litellm.get_model_info(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -1755,11 +1755,16 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
|||
|
||||
if model_info.get("supports_response_schema", False) is True:
|
||||
return True
|
||||
return False
|
||||
except Exception:
|
||||
verbose_logger.error(
|
||||
f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
|
||||
## check if provider supports response schema globally
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
request_type="chat_completion",
|
||||
)
|
||||
if supported_params is not None and "response_schema" in supported_params:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
|
|||
non_default_params["response_format"] = type_to_response_format_param(
|
||||
response_format=non_default_params["response_format"]
|
||||
)
|
||||
|
||||
if "tools" in non_default_params and isinstance(
|
||||
non_default_params, list
|
||||
): # fixes https://github.com/BerriAI/litellm/issues/4933
|
||||
|
@ -3494,24 +3500,16 @@ def get_optional_params( # noqa: PLR0915
|
|||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if temperature is not None:
|
||||
optional_params["temperature"] = temperature
|
||||
if max_tokens is not None:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if top_p is not None:
|
||||
optional_params["top_p"] = top_p
|
||||
if stream is not None:
|
||||
optional_params["stream"] = stream
|
||||
if stop is not None:
|
||||
optional_params["stop"] = stop
|
||||
if tools is not None:
|
||||
optional_params["tools"] = tools
|
||||
if tool_choice is not None:
|
||||
optional_params["tool_choice"] = tool_choice
|
||||
if response_format is not None:
|
||||
optional_params["response_format"] = response_format
|
||||
if seed is not None:
|
||||
optional_params["seed"] = seed
|
||||
optional_params = litellm.GroqChatConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
model=model,
|
||||
drop_params=(
|
||||
drop_params
|
||||
if drop_params is not None and isinstance(drop_params, bool)
|
||||
else False
|
||||
),
|
||||
)
|
||||
elif custom_llm_provider == "deepseek":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
|
|
@ -1745,7 +1745,8 @@
|
|||
"output_cost_per_token": 0.00000080,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-8b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1755,7 +1756,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-70b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1765,7 +1767,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-8b-instant": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1775,7 +1778,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-70b-versatile": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1785,7 +1789,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-405b-reasoning": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1795,7 +1800,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/mixtral-8x7b-32768": {
|
||||
"max_tokens": 32768,
|
||||
|
@ -1805,7 +1811,8 @@
|
|||
"output_cost_per_token": 0.00000024,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma-7b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1815,7 +1822,8 @@
|
|||
"output_cost_per_token": 0.00000007,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma2-9b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1825,7 +1833,8 @@
|
|||
"output_cost_per_token": 0.00000020,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1835,7 +1844,8 @@
|
|||
"output_cost_per_token": 0.00000089,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1845,7 +1855,8 @@
|
|||
"output_cost_per_token": 0.00000019,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"cerebras/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
|
|
|
@ -93,6 +93,7 @@ class BaseLLMChatTest(ABC):
|
|||
assert response.choices[0].message.content is not None
|
||||
|
||||
def test_json_response_pydantic_obj(self):
|
||||
litellm.set_verbose = True
|
||||
from pydantic import BaseModel
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
@ -119,6 +120,11 @@ class BaseLLMChatTest(ABC):
|
|||
response_format=TestModel,
|
||||
)
|
||||
assert res is not None
|
||||
|
||||
print(res.choices[0].message)
|
||||
|
||||
assert res.choices[0].message.content is not None
|
||||
assert res.choices[0].message.tool_calls is None
|
||||
except litellm.InternalServerError:
|
||||
pytest.skip("Model is overloaded")
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ from base_llm_unit_tests import BaseLLMChatTest
|
|||
class TestGroq(BaseLLMChatTest):
|
||||
def get_base_completion_call_args(self) -> dict:
|
||||
return {
|
||||
"model": "groq/llama3-70b-8192",
|
||||
"model": "groq/llama-3.1-70b-versatile",
|
||||
}
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
|
|
|
@ -749,6 +749,7 @@ def test_convert_model_response_object():
|
|||
("gemini/gemini-1.5-pro", True),
|
||||
("predibase/llama3-8b-instruct", True),
|
||||
("gpt-3.5-turbo", False),
|
||||
("groq/llama3-70b-8192", True),
|
||||
],
|
||||
)
|
||||
def test_supports_response_schema(model, expected_bool):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue