forked from phoenix/litellm-mirror
feat add support for alist_batches
This commit is contained in:
parent
36dca6bcce
commit
43a06f408c
2 changed files with 177 additions and 30 deletions
|
@ -20,10 +20,8 @@ import httpx
|
|||
|
||||
import litellm
|
||||
from litellm import client
|
||||
from litellm.utils import supports_httpx_timeout
|
||||
|
||||
from ..llms.openai import OpenAIBatchesAPI, OpenAIFilesAPI
|
||||
from ..types.llms.openai import (
|
||||
from litellm.llms.openai import OpenAIBatchesAPI, OpenAIFilesAPI
|
||||
from litellm.types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
|
@ -34,7 +32,8 @@ from ..types.llms.openai import (
|
|||
HttpxBinaryResponseContent,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from ..types.router import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.utils import supports_httpx_timeout
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
openai_batches_instance = OpenAIBatchesAPI()
|
||||
|
@ -314,17 +313,139 @@ def retrieve_batch(
|
|||
raise e
|
||||
|
||||
|
||||
def cancel_batch():
|
||||
pass
|
||||
async def alist_batches(
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
metadata: Optional[Dict[str, str]] = None,
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Batch:
|
||||
"""
|
||||
Async: List your organization's batches.
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["alist_batches"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
list_batches,
|
||||
after,
|
||||
limit,
|
||||
custom_llm_provider,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response # type: ignore
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def list_batch():
|
||||
pass
|
||||
def list_batches(
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Lists batches
|
||||
|
||||
List your organization's batches.
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
if custom_llm_provider == "openai":
|
||||
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||
)
|
||||
# set API KEY
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = (
|
||||
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
)
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
async def acancel_batch():
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) == False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_is_async = kwargs.pop("alist_batches", False) is True
|
||||
|
||||
response = openai_batches_instance.list_batches(
|
||||
_is_async=_is_async,
|
||||
after=after,
|
||||
limit=limit,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
organization=organization,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
pass
|
||||
|
||||
|
||||
async def alist_batch():
|
||||
pass
|
||||
|
||||
|
||||
def cancel_batch():
|
||||
pass
|
||||
|
||||
|
||||
async def acancel_batch():
|
||||
pass
|
||||
|
|
|
@ -2602,26 +2602,52 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
response = openai_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
# def list_batch(
|
||||
# self,
|
||||
# list_batch_data: ListBatchRequest,
|
||||
# api_key: Optional[str],
|
||||
# api_base: Optional[str],
|
||||
# timeout: Union[float, httpx.Timeout],
|
||||
# max_retries: Optional[int],
|
||||
# organization: Optional[str],
|
||||
# client: Optional[OpenAI] = None,
|
||||
# ):
|
||||
# openai_client: OpenAI = self.get_openai_client(
|
||||
# api_key=api_key,
|
||||
# api_base=api_base,
|
||||
# timeout=timeout,
|
||||
# max_retries=max_retries,
|
||||
# organization=organization,
|
||||
# client=client,
|
||||
# )
|
||||
# response = openai_client.batches.list(**list_batch_data)
|
||||
# return response
|
||||
async def alist_batches(
|
||||
self,
|
||||
openai_client: AsyncOpenAI,
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
):
|
||||
verbose_logger.debug("listing batches, after= %s, limit= %s", after, limit)
|
||||
response = await openai_client.batches.list(after=after, limit=limit)
|
||||
return response
|
||||
|
||||
def list_batches(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
client: Optional[OpenAI] = None,
|
||||
):
|
||||
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.alist_batches( # type: ignore
|
||||
openai_client=openai_client, after=after, limit=limit
|
||||
)
|
||||
response = openai_client.batches.list(after=after, limit=limit)
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIAssistantsAPI(BaseLLM):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue