Refactor proxy_server.py for readability and code consistency

This commit is contained in:
coconut49 2023-10-17 23:48:55 +08:00
parent 266b3b82f5
commit 4414594e7d
No known key found for this signature in database

View file

@ -1,11 +1,11 @@
import sys, os, platform, time, copy
import threading
import shutil, random, traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path - for litellm local dev
try:
import uvicorn
import fastapi
@ -29,6 +29,7 @@ except ImportError as e:
from llm import litellm_completion
import random
list_of_messages = [
"'The thing I wish you improved is...'",
"'A feature I really want is...'",
@ -40,6 +41,7 @@ list_of_messages = [
"'I get frustrated when the product...'",
]
def generate_feedback_box():
box_width = 60
@ -58,8 +60,8 @@ def generate_feedback_box():
print()
print()
generate_feedback_box()
generate_feedback_box()
print()
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
@ -100,19 +102,24 @@ config_dir = os.getcwd()
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
log_file = 'api_log.json'
#### HELPER FUNCTIONS ####
def print_verbose(print_statement):
global user_debug
if user_debug:
print(print_statement)
def usage_telemetry(feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
def usage_telemetry(
feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
if user_telemetry:
data = {
"feature": feature # "local_proxy_server"
}
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,), daemon=True).start()
def add_keys_to_config(key, value):
# Check if file exists
if os.path.exists(user_config_path):
@ -130,6 +137,7 @@ def add_keys_to_config(key, value):
with open(user_config_path, 'wb') as f:
tomli_w.dump(config, f)
def save_params_to_config(data: dict):
# Check if file exists
if os.path.exists(user_config_path):
@ -164,7 +172,6 @@ def save_params_to_config(data: dict):
def load_config():
try:
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
@ -176,9 +183,12 @@ def load_config():
os.environ[key] = user_config["keys"][key] # litellm can read keys from the environment
## settings
if "general" in user_config:
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt", True) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get("drop_params", True) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get("fallbacks", None) # fallback models in case initial completion call fails
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt",
True) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get("drop_params",
True) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get("fallbacks",
None) # fallback models in case initial completion call fails
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
if user_model is None: # `litellm --model <model-name>`` > default_model.
@ -223,10 +233,11 @@ def load_config():
},
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
)
except Exception as e:
pass
def initialize(model, alias, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params, add_function_to_prompt, headers, save):
def initialize(model, alias, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params,
add_function_to_prompt, headers, save):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry, user_headers
user_model = model
user_debug = debug
@ -263,6 +274,7 @@ def initialize(model, alias, api_base, debug, temperature, max_tokens, max_budge
user_telemetry = telemetry
usage_telemetry(feature="local_proxy_server")
def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy):
import requests
# Load .env file
@ -293,8 +305,6 @@ def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, dep
files = {"file": open(".env", "rb")}
# print(files)
response = requests.post(url, data=data, files=files)
# print(response)
# Check the status of the request
@ -309,6 +319,7 @@ def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, dep
return url
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
@ -374,6 +385,7 @@ def track_cost_callback(
except:
pass
def logger(
kwargs, # kwargs to completion
completion_response=None, # response from completion
@ -399,6 +411,7 @@ def logger(
existing_data = {}
existing_data.update(log_data)
def write_to_log():
with open(log_file, 'w') as f:
json.dump(existing_data, f, indent=2)
@ -406,7 +419,8 @@ def logger(
thread = threading.Thread(target=write_to_log, daemon=True)
thread.start()
elif log_event_type == 'post_api_call':
if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get("complete_streaming_response", False):
if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get(
"complete_streaming_response", False):
inference_params = copy.deepcopy(kwargs)
timestamp = inference_params.pop('start_time')
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
@ -425,10 +439,12 @@ def logger(
except:
pass
litellm.input_callback = [logger]
litellm.success_callback = [logger]
litellm.failure_callback = [logger]
#### API ENDPOINTS ####
@router.get("/models") # if project requires model list
def model_list():
@ -440,19 +456,26 @@ def model_list():
else:
all_models = litellm.utils.get_valid_models()
return dict(
data = [{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in all_models],
data=[{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in
all_models],
object="list",
)
@router.post("/completions")
async def completion(request: Request):
data = await request.json()
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature, user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature,
user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers,
user_debug=user_debug)
@router.post("/chat/completions")
async def chat_completion(request: Request):
data = await request.json()
response = litellm_completion(data, type="chat_completion", user_model=user_model, user_temperature=user_temperature, user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
response = litellm_completion(data, type="chat_completion", user_model=user_model,
user_temperature=user_temperature, user_max_tokens=user_max_tokens,
user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
return response
@ -462,6 +485,7 @@ async def v1_completion(request: Request):
data = await request.json()
return litellm_completion(data=data, type="completion")
@router.post("/v1/chat/completions")
async def v1_chat_completion(request: Request):
data = await request.json()
@ -469,6 +493,7 @@ async def v1_chat_completion(request: Request):
response = litellm_completion(data, type="chat_completion")
return response
def print_cost_logs():
with open('costs.json', 'r') as f:
# print this in green
@ -477,13 +502,16 @@ def print_cost_logs():
print("\033[0m")
return
@router.get("/ollama_logs")
async def retrieve_server_log(request: Request):
filepath = os.path.expanduser('~/.ollama/logs/server.log')
return FileResponse(filepath)
@router.get("/")
async def home(request: Request):
return "LiteLLM: RUNNING"
app.include_router(router)