diff --git a/docs/my-website/docs/assistants.md b/docs/my-website/docs/assistants.md
index 2380fe5c6..1af780500 100644
--- a/docs/my-website/docs/assistants.md
+++ b/docs/my-website/docs/assistants.md
@@ -150,7 +150,7 @@ $ litellm --config /path/to/config.yaml
```bash
curl "http://0.0.0.0:4000/v1/assistants?order=desc&limit=20" \
-H "Content-Type: application/json" \
- -H "Authorization: Bearer sk-1234" \
+ -H "Authorization: Bearer sk-1234"
```
**Create a Thread**
@@ -162,6 +162,14 @@ curl http://0.0.0.0:4000/v1/threads \
-d ''
```
+**Get a Thread**
+
+```bash
+curl http://0.0.0.0:4000/v1/threads/{thread_id} \
+ -H "Content-Type: application/json" \
+ -H "Authorization: Bearer sk-1234"
+```
+
**Add Messages to the Thread**
```bash
diff --git a/docs/my-website/docs/caching/all_caches.md b/docs/my-website/docs/caching/all_caches.md
index eb309f9b8..1b8bbd8e0 100644
--- a/docs/my-website/docs/caching/all_caches.md
+++ b/docs/my-website/docs/caching/all_caches.md
@@ -212,6 +212,94 @@ If you run the code two times, response1 will use the cache from the first run t
+
+
+## Switch Cache On / Off Per LiteLLM Call
+
+LiteLLM supports 4 cache-controls:
+
+- `no-cache`: *Optional(bool)* When `True`, Will not return a cached response, but instead call the actual endpoint.
+- `no-store`: *Optional(bool)* When `True`, Will not cache the response.
+- `ttl`: *Optional(int)* - Will cache the response for the user-defined amount of time (in seconds).
+- `s-maxage`: *Optional(int)* Will only accept cached responses that are within user-defined range (in seconds).
+
+[Let us know if you need more](https://github.com/BerriAI/litellm/issues/1218)
+
+
+
+Example usage `no-cache` - When `True`, Will not return a cached response
+
+```python
+response = litellm.completion(
+ model="gpt-3.5-turbo",
+ messages=[
+ {
+ "role": "user",
+ "content": "hello who are you"
+ }
+ ],
+ cache={"no-cache": True},
+ )
+```
+
+
+
+
+
+Example usage `no-store` - When `True`, Will not cache the response.
+
+```python
+response = litellm.completion(
+ model="gpt-3.5-turbo",
+ messages=[
+ {
+ "role": "user",
+ "content": "hello who are you"
+ }
+ ],
+ cache={"no-store": True},
+ )
+```
+
+
+
+
+Example usage `ttl` - cache the response for 10 seconds
+
+```python
+response = litellm.completion(
+ model="gpt-3.5-turbo",
+ messages=[
+ {
+ "role": "user",
+ "content": "hello who are you"
+ }
+ ],
+ cache={"ttl": 10},
+ )
+```
+
+
+
+
+Example usage `s-maxage` - Will only accept cached responses for 60 seconds
+
+```python
+response = litellm.completion(
+ model="gpt-3.5-turbo",
+ messages=[
+ {
+ "role": "user",
+ "content": "hello who are you"
+ }
+ ],
+ cache={"s-maxage": 60},
+ )
+```
+
+
+
+
## Cache Context Manager - Enable, Disable, Update Cache
diff --git a/docs/my-website/docs/projects/llmcord.py (Discord LLM Chatbot).md b/docs/my-website/docs/projects/llm_cord.md
similarity index 93%
rename from docs/my-website/docs/projects/llmcord.py (Discord LLM Chatbot).md
rename to docs/my-website/docs/projects/llm_cord.md
index f8acb9383..6a28d5c88 100644
--- a/docs/my-website/docs/projects/llmcord.py (Discord LLM Chatbot).md
+++ b/docs/my-website/docs/projects/llm_cord.md
@@ -1,3 +1,5 @@
+# llmcord.py
+
llmcord.py lets you and your friends chat with LLMs directly in your Discord server. It works with practically any LLM, remote or locally hosted.
Github: https://github.com/jakobdylanc/discord-llm-chatbot
diff --git a/docs/my-website/docs/proxy/cost_tracking.md b/docs/my-website/docs/proxy/cost_tracking.md
index de1a63a4c..b63fab106 100644
--- a/docs/my-website/docs/proxy/cost_tracking.md
+++ b/docs/my-website/docs/proxy/cost_tracking.md
@@ -138,14 +138,22 @@ Navigate to the Usage Tab on the LiteLLM UI (found on https://your-proxy-endpoin
## API Endpoints to get Spend
-#### Getting Spend Reports - To Charge Other Teams, API Keys
+#### Getting Spend Reports - To Charge Other Teams, Customers
-Use the `/global/spend/report` endpoint to get daily spend per team, with a breakdown of spend per API Key, Model
+Use the `/global/spend/report` endpoint to get daily spend report per
+- team
+- customer [this is `user` passed to `/chat/completions` request](#how-to-track-spend-with-litellm)
+
+
+
+
##### Example Request
+👉 Key Change: Specify `group_by=team`
+
```shell
-curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
+curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=team' \
-H 'Authorization: Bearer sk-1234'
```
@@ -254,6 +262,69 @@ Output from script
```
+
+
+
+
+
+
+
+
+
+##### Example Request
+
+👉 Key Change: Specify `group_by=customer`
+
+
+```shell
+curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=customer' \
+ -H 'Authorization: Bearer sk-1234'
+```
+
+##### Example Response
+
+
+```shell
+[
+ {
+ "group_by_day": "2024-04-30T00:00:00+00:00",
+ "customers": [
+ {
+ "customer": "palantir",
+ "total_spend": 0.0015265,
+ "metadata": [ # see the spend by unique(key + model)
+ {
+ "model": "gpt-4",
+ "spend": 0.00123,
+ "total_tokens": 28,
+ "api_key": "88dc28.." # the hashed api key
+ },
+ {
+ "model": "gpt-4",
+ "spend": 0.00123,
+ "total_tokens": 28,
+ "api_key": "a73dc2.." # the hashed api key
+ },
+ {
+ "model": "chatgpt-v-2",
+ "spend": 0.000214,
+ "total_tokens": 122,
+ "api_key": "898c28.." # the hashed api key
+ },
+ {
+ "model": "gpt-3.5-turbo",
+ "spend": 0.0000825,
+ "total_tokens": 85,
+ "api_key": "84dc28.." # the hashed api key
+ }
+ ]
+ }
+ ]
+ }
+]
+```
+
+
diff --git a/docs/my-website/docs/proxy/debugging.md b/docs/my-website/docs/proxy/debugging.md
index b9f2ba8da..571a97c0e 100644
--- a/docs/my-website/docs/proxy/debugging.md
+++ b/docs/my-website/docs/proxy/debugging.md
@@ -42,6 +42,14 @@ Set `JSON_LOGS="True"` in your env:
```bash
export JSON_LOGS="True"
```
+**OR**
+
+Set `json_logs: true` in your yaml:
+
+```yaml
+litellm_settings:
+ json_logs: true
+```
Start proxy
@@ -49,4 +57,35 @@ Start proxy
$ litellm
```
-The proxy will now all logs in json format.
\ No newline at end of file
+The proxy will now all logs in json format.
+
+## Control Log Output
+
+Turn off fastapi's default 'INFO' logs
+
+1. Turn on 'json logs'
+```yaml
+litellm_settings:
+ json_logs: true
+```
+
+2. Set `LITELLM_LOG` to 'ERROR'
+
+Only get logs if an error occurs.
+
+```bash
+LITELLM_LOG="ERROR"
+```
+
+3. Start proxy
+
+
+```bash
+$ litellm
+```
+
+Expected Output:
+
+```bash
+# no info statements
+```
\ No newline at end of file
diff --git a/docs/my-website/docs/proxy/multiple_admins.md b/docs/my-website/docs/proxy/multiple_admins.md
index 388df0d60..376ff0174 100644
--- a/docs/my-website/docs/proxy/multiple_admins.md
+++ b/docs/my-website/docs/proxy/multiple_admins.md
@@ -2,11 +2,21 @@
Call management endpoints on behalf of a user. (Useful when connecting proxy to your development platform).
-:::info
-Requires Enterprise License for usage.
-:::
-## Set `LiteLLM-Changed-By` in request headers
+:::tip
+
+Requires Enterprise License, Get in touch with us [here](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
+
+:::
+
+## 1. Switch on audit Logs
+Add `store_audit_logs` to your litellm config.yaml and then start the proxy
+```shell
+litellm_settings:
+ store_audit_logs: true
+```
+
+## 2. Set `LiteLLM-Changed-By` in request headers
Set the 'user_id' in request headers, when calling a management endpoint. [View Full List](https://litellm-api.up.railway.app/#/team%20management).
@@ -26,7 +36,7 @@ curl -X POST 'http://0.0.0.0:4000/team/update' \
}'
```
-## Emitted Audit Log
+## 3. Emitted Audit Log
```bash
{
diff --git a/docs/my-website/docs/proxy/prod.md b/docs/my-website/docs/proxy/prod.md
index 35c8c575b..587164fe6 100644
--- a/docs/my-website/docs/proxy/prod.md
+++ b/docs/my-website/docs/proxy/prod.md
@@ -21,6 +21,7 @@ general_settings:
litellm_settings:
set_verbose: False # Switch off Debug Logging, ensure your logs do not have any debugging on
+ json_logs: true # Get debug logs in json format
```
Set slack webhook url in your env
@@ -28,6 +29,11 @@ Set slack webhook url in your env
export SLACK_WEBHOOK_URL="https://hooks.slack.com/services/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"
```
+Turn off FASTAPI's default info logs
+```bash
+export LITELLM_LOG="ERROR"
+```
+
:::info
Need Help or want dedicated support ? Talk to a founder [here]: (https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
diff --git a/docs/my-website/docs/proxy/reliability.md b/docs/my-website/docs/proxy/reliability.md
index e39a6765f..ace94251d 100644
--- a/docs/my-website/docs/proxy/reliability.md
+++ b/docs/my-website/docs/proxy/reliability.md
@@ -2,18 +2,13 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
-# 🔥 Fallbacks, Retries, Timeouts, Load Balancing
+# 🔥 Load Balancing, Fallbacks, Retries, Timeouts
-Retry call with multiple instances of the same model.
-
-If a call fails after num_retries, fall back to another model group.
-
-If the error is a context window exceeded error, fall back to a larger model group (if given).
-
-[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
+- Quick Start [load balancing](#test---load-balancing)
+- Quick Start [client side fallbacks](#test---client-side-fallbacks)
## Quick Start - Load Balancing
-### Step 1 - Set deployments on config
+#### Step 1 - Set deployments on config
**Example config below**. Here requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
```yaml
@@ -38,50 +33,220 @@ model_list:
rpm: 1440
```
-### Step 2: Start Proxy with config
+#### Step 2: Start Proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
-### Step 3: Use proxy - Call a model group [Load Balancing]
-Curl Command
+### Test - Load Balancing
+
+Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo
+
+👉 Key Change: `model="gpt-3.5-turbo"`
+
+**Check the `model_id` in Response Headers to make sure the requests are being load balanced**
+
+
+
+
+
+```python
+import openai
+client = openai.OpenAI(
+ api_key="anything",
+ base_url="http://0.0.0.0:4000"
+)
+
+response = client.chat.completions.create(
+ model="gpt-3.5-turbo",
+ messages = [
+ {
+ "role": "user",
+ "content": "this is a test request, write a short poem"
+ }
+ ]
+)
+
+print(response)
+```
+
+
+
+
+Pass `metadata` as part of the request body
+
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
---header 'Content-Type: application/json' \
---data ' {
- "model": "gpt-3.5-turbo",
- "messages": [
+ --header 'Content-Type: application/json' \
+ --data '{
+ "model": "gpt-3.5-turbo",
+ "messages": [
{
- "role": "user",
- "content": "what llm are you"
+ "role": "user",
+ "content": "what llm are you"
}
- ],
- }
-'
+ ]
+}'
+```
+
+
+
+```python
+from langchain.chat_models import ChatOpenAI
+from langchain.prompts.chat import (
+ ChatPromptTemplate,
+ HumanMessagePromptTemplate,
+ SystemMessagePromptTemplate,
+)
+from langchain.schema import HumanMessage, SystemMessage
+import os
+
+os.environ["OPENAI_API_KEY"] = "anything"
+
+chat = ChatOpenAI(
+ openai_api_base="http://0.0.0.0:4000",
+ model="gpt-3.5-turbo",
+)
+
+messages = [
+ SystemMessage(
+ content="You are a helpful assistant that im using to make a test request to."
+ ),
+ HumanMessage(
+ content="test from litellm. tell me why it's amazing in 1 sentence"
+ ),
+]
+response = chat(messages)
+
+print(response)
```
-### Usage - Call a specific model deployment
-If you want to call a specific model defined in the `config.yaml`, you can call the `litellm_params: model`
+
+
+
+
+
+### Test - Client Side Fallbacks
+In this request the following will occur:
+1. The request to `model="zephyr-beta"` will fail
+2. litellm proxy will loop through all the model_groups specified in `fallbacks=["gpt-3.5-turbo"]`
+3. The request to `model="gpt-3.5-turbo"` will succeed and the client making the request will get a response from gpt-3.5-turbo
+
+👉 Key Change: `"fallbacks": ["gpt-3.5-turbo"]`
+
+
+
+
+
+```python
+import openai
+client = openai.OpenAI(
+ api_key="anything",
+ base_url="http://0.0.0.0:4000"
+)
+
+response = client.chat.completions.create(
+ model="zephyr-beta",
+ messages = [
+ {
+ "role": "user",
+ "content": "this is a test request, write a short poem"
+ }
+ ],
+ extra_body={
+ "metadata": {
+ "fallbacks": ["gpt-3.5-turbo"]
+ }
+ }
+)
+
+print(response)
+```
+
+
+
+
+Pass `metadata` as part of the request body
+
+```shell
+curl --location 'http://0.0.0.0:4000/chat/completions' \
+ --header 'Content-Type: application/json' \
+ --data '{
+ "model": "zephyr-beta"",
+ "messages": [
+ {
+ "role": "user",
+ "content": "what llm are you"
+ }
+ ],
+ "metadata": {
+ "fallbacks": ["gpt-3.5-turbo"]
+ }
+}'
+```
+
+
+
+```python
+from langchain.chat_models import ChatOpenAI
+from langchain.prompts.chat import (
+ ChatPromptTemplate,
+ HumanMessagePromptTemplate,
+ SystemMessagePromptTemplate,
+)
+from langchain.schema import HumanMessage, SystemMessage
+import os
+
+os.environ["OPENAI_API_KEY"] = "anything"
+
+chat = ChatOpenAI(
+ openai_api_base="http://0.0.0.0:4000",
+ model="zephyr-beta",
+ extra_body={
+ "metadata": {
+ "fallbacks": ["gpt-3.5-turbo"]
+ }
+ }
+)
+
+messages = [
+ SystemMessage(
+ content="You are a helpful assistant that im using to make a test request to."
+ ),
+ HumanMessage(
+ content="test from litellm. tell me why it's amazing in 1 sentence"
+ ),
+]
+response = chat(messages)
+
+print(response)
+```
+
+
+
+
+
+
+
+
-## Fallbacks + Retries + Timeouts + Cooldowns
+## Advanced
+### Fallbacks + Retries + Timeouts + Cooldowns
**Set via config**
```yaml
@@ -114,44 +279,7 @@ litellm_settings:
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
```
-
-**Set dynamically**
-
-```bash
-curl --location 'http://0.0.0.0:4000/chat/completions' \
---header 'Content-Type: application/json' \
---data ' {
- "model": "zephyr-beta",
- "messages": [
- {
- "role": "user",
- "content": "what llm are you"
- }
- ],
- "fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
- "context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
- "num_retries": 2,
- "timeout": 10
- }
-'
-```
-
-### Test it!
-
-
-```bash
-curl --location 'http://0.0.0.0:4000/chat/completions' \
- --header 'Content-Type: application/json' \
- --data-raw '{
- "model": "zephyr-beta", # 👈 MODEL NAME to fallback from
- "messages": [
- {"role": "user", "content": "what color is red"}
- ],
- "mock_testing_fallbacks": true
- }'
-```
-
-## Advanced - Context Window Fallbacks (Pre-Call Checks + Fallbacks)
+### Context Window Fallbacks (Pre-Call Checks + Fallbacks)
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
@@ -287,7 +415,7 @@ print(response)
-## Advanced - EU-Region Filtering (Pre-Call Checks)
+### EU-Region Filtering (Pre-Call Checks)
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
@@ -350,7 +478,7 @@ print(response)
print(f"response.headers.get('x-litellm-model-api-base')")
```
-## Advanced - Custom Timeouts, Stream Timeouts - Per Model
+### Custom Timeouts, Stream Timeouts - Per Model
For each model you can set `timeout` & `stream_timeout` under `litellm_params`
```yaml
model_list:
@@ -379,7 +507,7 @@ $ litellm --config /path/to/config.yaml
```
-## Advanced - Setting Dynamic Timeouts - Per Request
+### Setting Dynamic Timeouts - Per Request
LiteLLM Proxy supports setting a `timeout` per request
diff --git a/docs/my-website/sidebars.js b/docs/my-website/sidebars.js
index b6b597d30..ff110bb62 100644
--- a/docs/my-website/sidebars.js
+++ b/docs/my-website/sidebars.js
@@ -255,6 +255,7 @@ const sidebars = {
"projects/GPT Migrate",
"projects/YiVal",
"projects/LiteLLM Proxy",
+ "projects/llm_cord",
],
},
],
diff --git a/litellm/__init__.py b/litellm/__init__.py
index b6e6d97dc..e92ae355e 100644
--- a/litellm/__init__.py
+++ b/litellm/__init__.py
@@ -709,6 +709,7 @@ all_embedding_models = (
openai_image_generation_models = ["dall-e-2", "dall-e-3"]
from .timeout import timeout
+from .cost_calculator import completion_cost
from .utils import (
client,
exception_type,
@@ -718,7 +719,6 @@ from .utils import (
create_pretrained_tokenizer,
create_tokenizer,
cost_per_token,
- completion_cost,
supports_function_calling,
supports_parallel_function_calling,
supports_vision,
diff --git a/litellm/cost_calculator.py b/litellm/cost_calculator.py
index 75717378b..9a763d63e 100644
--- a/litellm/cost_calculator.py
+++ b/litellm/cost_calculator.py
@@ -1,6 +1,7 @@
# What is this?
## File for 'response_cost' calculation in Logging
-from typing import Optional, Union, Literal
+from typing import Optional, Union, Literal, List
+import litellm._logging
from litellm.utils import (
ModelResponse,
EmbeddingResponse,
@@ -8,10 +9,281 @@ from litellm.utils import (
TranscriptionResponse,
TextCompletionResponse,
CallTypes,
- completion_cost,
+ cost_per_token,
print_verbose,
+ CostPerToken,
+ token_counter,
)
import litellm
+from litellm import verbose_logger
+
+
+# Extract the number of billion parameters from the model name
+# only used for together_computer LLMs
+def get_model_params_and_category(model_name) -> str:
+ """
+ Helper function for calculating together ai pricing.
+
+ Returns
+ - str - model pricing category if mapped else received model name
+ """
+ import re
+
+ model_name = model_name.lower()
+ re_params_match = re.search(
+ r"(\d+b)", model_name
+ ) # catch all decimals like 3b, 70b, etc
+ category = None
+ if re_params_match is not None:
+ params_match = str(re_params_match.group(1))
+ params_match = params_match.replace("b", "")
+ if params_match is not None:
+ params_billion = float(params_match)
+ else:
+ return model_name
+ # Determine the category based on the number of parameters
+ if params_billion <= 4.0:
+ category = "together-ai-up-to-4b"
+ elif params_billion <= 8.0:
+ category = "together-ai-4.1b-8b"
+ elif params_billion <= 21.0:
+ category = "together-ai-8.1b-21b"
+ elif params_billion <= 41.0:
+ category = "together-ai-21.1b-41b"
+ elif params_billion <= 80.0:
+ category = "together-ai-41.1b-80b"
+ elif params_billion <= 110.0:
+ category = "together-ai-81.1b-110b"
+ if category is not None:
+ return category
+
+ return model_name
+
+
+def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
+ # see https://replicate.com/pricing
+ # for all litellm currently supported LLMs, almost all requests go to a100_80gb
+ a100_80gb_price_per_second_public = (
+ 0.001400 # assume all calls sent to A100 80GB for now
+ )
+ if total_time == 0.0: # total time is in ms
+ start_time = completion_response["created"]
+ end_time = getattr(completion_response, "ended", time.time())
+ total_time = end_time - start_time
+
+ return a100_80gb_price_per_second_public * total_time / 1000
+
+
+def completion_cost(
+ completion_response=None,
+ model: Optional[str] = None,
+ prompt="",
+ messages: List = [],
+ completion="",
+ total_time=0.0, # used for replicate, sagemaker
+ call_type: Literal[
+ "embedding",
+ "aembedding",
+ "completion",
+ "acompletion",
+ "atext_completion",
+ "text_completion",
+ "image_generation",
+ "aimage_generation",
+ "moderation",
+ "amoderation",
+ "atranscription",
+ "transcription",
+ "aspeech",
+ "speech",
+ ] = "completion",
+ ### REGION ###
+ custom_llm_provider=None,
+ region_name=None, # used for bedrock pricing
+ ### IMAGE GEN ###
+ size=None,
+ quality=None,
+ n=None, # number of images
+ ### CUSTOM PRICING ###
+ custom_cost_per_token: Optional[CostPerToken] = None,
+ custom_cost_per_second: Optional[float] = None,
+) -> float:
+ """
+ Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
+
+ Parameters:
+ completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
+
+ [OPTIONAL PARAMS]
+ model (str): Optional. The name of the language model used in the completion calls
+ prompt (str): Optional. The input prompt passed to the llm
+ completion (str): Optional. The output completion text from the llm
+ total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
+ custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
+ custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
+
+ Returns:
+ float: The cost in USD dollars for the completion based on the provided parameters.
+
+ Exceptions:
+ Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
+
+
+ Note:
+ - If completion_response is provided, the function extracts token information and the model name from it.
+ - If completion_response is not provided, the function calculates token counts based on the model and input text.
+ - The cost is calculated based on the model, prompt tokens, and completion tokens.
+ - For certain models containing "togethercomputer" in the name, prices are based on the model size.
+ - For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
+ """
+ try:
+ if (
+ (call_type == "aimage_generation" or call_type == "image_generation")
+ and model is not None
+ and isinstance(model, str)
+ and len(model) == 0
+ and custom_llm_provider == "azure"
+ ):
+ model = "dall-e-2" # for dall-e-2, azure expects an empty model name
+ # Handle Inputs to completion_cost
+ prompt_tokens = 0
+ completion_tokens = 0
+ custom_llm_provider = None
+ if completion_response is not None:
+ # get input/output tokens from completion_response
+ prompt_tokens = completion_response.get("usage", {}).get("prompt_tokens", 0)
+ completion_tokens = completion_response.get("usage", {}).get(
+ "completion_tokens", 0
+ )
+ total_time = completion_response.get("_response_ms", 0)
+ verbose_logger.debug(
+ f"completion_response response ms: {completion_response.get('_response_ms')} "
+ )
+ model = model or completion_response.get(
+ "model", None
+ ) # check if user passed an override for model, if it's none check completion_response['model']
+ if hasattr(completion_response, "_hidden_params"):
+ if (
+ completion_response._hidden_params.get("model", None) is not None
+ and len(completion_response._hidden_params["model"]) > 0
+ ):
+ model = completion_response._hidden_params.get("model", model)
+ custom_llm_provider = completion_response._hidden_params.get(
+ "custom_llm_provider", ""
+ )
+ region_name = completion_response._hidden_params.get(
+ "region_name", region_name
+ )
+ size = completion_response._hidden_params.get(
+ "optional_params", {}
+ ).get(
+ "size", "1024-x-1024"
+ ) # openai default
+ quality = completion_response._hidden_params.get(
+ "optional_params", {}
+ ).get(
+ "quality", "standard"
+ ) # openai default
+ n = completion_response._hidden_params.get("optional_params", {}).get(
+ "n", 1
+ ) # openai default
+ else:
+ if len(messages) > 0:
+ prompt_tokens = token_counter(model=model, messages=messages)
+ elif len(prompt) > 0:
+ prompt_tokens = token_counter(model=model, text=prompt)
+ completion_tokens = token_counter(model=model, text=completion)
+ if model is None:
+ raise ValueError(
+ f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
+ )
+
+ if (
+ call_type == CallTypes.image_generation.value
+ or call_type == CallTypes.aimage_generation.value
+ ):
+ ### IMAGE GENERATION COST CALCULATION ###
+ if custom_llm_provider == "vertex_ai":
+ # https://cloud.google.com/vertex-ai/generative-ai/pricing
+ # Vertex Charges Flat $0.20 per image
+ return 0.020
+
+ # fix size to match naming convention
+ if "x" in size and "-x-" not in size:
+ size = size.replace("x", "-x-")
+ image_gen_model_name = f"{size}/{model}"
+ image_gen_model_name_with_quality = image_gen_model_name
+ if quality is not None:
+ image_gen_model_name_with_quality = f"{quality}/{image_gen_model_name}"
+ size = size.split("-x-")
+ height = int(size[0]) # if it's 1024-x-1024 vs. 1024x1024
+ width = int(size[1])
+ verbose_logger.debug(f"image_gen_model_name: {image_gen_model_name}")
+ verbose_logger.debug(
+ f"image_gen_model_name_with_quality: {image_gen_model_name_with_quality}"
+ )
+ if image_gen_model_name in litellm.model_cost:
+ return (
+ litellm.model_cost[image_gen_model_name]["input_cost_per_pixel"]
+ * height
+ * width
+ * n
+ )
+ elif image_gen_model_name_with_quality in litellm.model_cost:
+ return (
+ litellm.model_cost[image_gen_model_name_with_quality][
+ "input_cost_per_pixel"
+ ]
+ * height
+ * width
+ * n
+ )
+ else:
+ raise Exception(
+ f"Model={image_gen_model_name} not found in completion cost model map"
+ )
+ # Calculate cost based on prompt_tokens, completion_tokens
+ if (
+ "togethercomputer" in model
+ or "together_ai" in model
+ or custom_llm_provider == "together_ai"
+ ):
+ # together ai prices based on size of llm
+ # get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
+ model = get_model_params_and_category(model)
+ # replicate llms are calculate based on time for request running
+ # see https://replicate.com/pricing
+ elif (
+ model in litellm.replicate_models or "replicate" in model
+ ) and model not in litellm.model_cost:
+ # for unmapped replicate model, default to replicate's time tracking logic
+ return get_replicate_completion_pricing(completion_response, total_time)
+
+ if model is None:
+ raise ValueError(
+ f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
+ )
+
+ (
+ prompt_tokens_cost_usd_dollar,
+ completion_tokens_cost_usd_dollar,
+ ) = cost_per_token(
+ model=model,
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ custom_llm_provider=custom_llm_provider,
+ response_time_ms=total_time,
+ region_name=region_name,
+ custom_cost_per_second=custom_cost_per_second,
+ custom_cost_per_token=custom_cost_per_token,
+ )
+ _final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
+ print_verbose(
+ f"final cost: {_final_cost}; prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}; completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
+ )
+ return _final_cost
+ except Exception as e:
+ raise e
def response_cost_calculator(
@@ -47,7 +319,7 @@ def response_cost_calculator(
) -> Optional[float]:
try:
response_cost: float = 0.0
- if cache_hit is not None and cache_hit == True:
+ if cache_hit is not None and cache_hit is True:
response_cost = 0.0
else:
response_object._hidden_params["optional_params"] = optional_params
@@ -62,9 +334,11 @@ def response_cost_calculator(
if (
model in litellm.model_cost
and custom_pricing is not None
- and custom_llm_provider == True
+ and custom_llm_provider is True
): # override defaults if custom pricing is set
base_model = model
+ elif base_model is None:
+ base_model = model
# base_model defaults to None if not set on model_info
response_cost = completion_cost(
completion_response=response_object,
diff --git a/litellm/exceptions.py b/litellm/exceptions.py
index 484e843b6..886b5889d 100644
--- a/litellm/exceptions.py
+++ b/litellm/exceptions.py
@@ -20,7 +20,7 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
message,
llm_provider,
model,
- response: httpx.Response,
+ response: Optional[httpx.Response] = None,
litellm_debug_info: Optional[str] = None,
max_retries: Optional[int] = None,
num_retries: Optional[int] = None,
@@ -32,8 +32,14 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
self.litellm_debug_info = litellm_debug_info
self.max_retries = max_retries
self.num_retries = num_retries
+ self.response = response or httpx.Response(
+ status_code=self.status_code,
+ request=httpx.Request(
+ method="GET", url="https://litellm.ai"
+ ), # mock request object
+ )
super().__init__(
- self.message, response=response, body=None
+ self.message, response=self.response, body=None
) # Call the base class constructor with the parameters it needs
def __str__(self):
@@ -60,7 +66,7 @@ class NotFoundError(openai.NotFoundError): # type: ignore
message,
model,
llm_provider,
- response: httpx.Response,
+ response: Optional[httpx.Response] = None,
litellm_debug_info: Optional[str] = None,
max_retries: Optional[int] = None,
num_retries: Optional[int] = None,
@@ -72,8 +78,14 @@ class NotFoundError(openai.NotFoundError): # type: ignore
self.litellm_debug_info = litellm_debug_info
self.max_retries = max_retries
self.num_retries = num_retries
+ self.response = response or httpx.Response(
+ status_code=self.status_code,
+ request=httpx.Request(
+ method="GET", url="https://litellm.ai"
+ ), # mock request object
+ )
super().__init__(
- self.message, response=response, body=None
+ self.message, response=self.response, body=None
) # Call the base class constructor with the parameters it needs
def __str__(self):
@@ -262,7 +274,7 @@ class RateLimitError(openai.RateLimitError): # type: ignore
message,
llm_provider,
model,
- response: httpx.Response,
+ response: Optional[httpx.Response] = None,
litellm_debug_info: Optional[str] = None,
max_retries: Optional[int] = None,
num_retries: Optional[int] = None,
@@ -274,8 +286,18 @@ class RateLimitError(openai.RateLimitError): # type: ignore
self.litellm_debug_info = litellm_debug_info
self.max_retries = max_retries
self.num_retries = num_retries
+ if response is None:
+ self.response = httpx.Response(
+ status_code=429,
+ request=httpx.Request(
+ method="POST",
+ url=" https://cloud.google.com/vertex-ai/",
+ ),
+ )
+ else:
+ self.response = response
super().__init__(
- self.message, response=response, body=None
+ self.message, response=self.response, body=None
) # Call the base class constructor with the parameters it needs
def __str__(self):
@@ -421,7 +443,7 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
message,
llm_provider,
model,
- response: httpx.Response,
+ response: Optional[httpx.Response] = None,
litellm_debug_info: Optional[str] = None,
max_retries: Optional[int] = None,
num_retries: Optional[int] = None,
@@ -433,8 +455,18 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
self.litellm_debug_info = litellm_debug_info
self.max_retries = max_retries
self.num_retries = num_retries
+ if response is None:
+ self.response = httpx.Response(
+ status_code=self.status_code,
+ request=httpx.Request(
+ method="POST",
+ url=" https://cloud.google.com/vertex-ai/",
+ ),
+ )
+ else:
+ self.response = response
super().__init__(
- self.message, response=response, body=None
+ self.message, response=self.response, body=None
) # Call the base class constructor with the parameters it needs
def __str__(self):
@@ -460,7 +492,7 @@ class InternalServerError(openai.InternalServerError): # type: ignore
message,
llm_provider,
model,
- response: httpx.Response,
+ response: Optional[httpx.Response] = None,
litellm_debug_info: Optional[str] = None,
max_retries: Optional[int] = None,
num_retries: Optional[int] = None,
@@ -472,8 +504,18 @@ class InternalServerError(openai.InternalServerError): # type: ignore
self.litellm_debug_info = litellm_debug_info
self.max_retries = max_retries
self.num_retries = num_retries
+ if response is None:
+ self.response = httpx.Response(
+ status_code=self.status_code,
+ request=httpx.Request(
+ method="POST",
+ url=" https://cloud.google.com/vertex-ai/",
+ ),
+ )
+ else:
+ self.response = response
super().__init__(
- self.message, response=response, body=None
+ self.message, response=self.response, body=None
) # Call the base class constructor with the parameters it needs
def __str__(self):
diff --git a/litellm/integrations/opentelemetry.py b/litellm/integrations/opentelemetry.py
index b5fbacdf3..bb9e34b1a 100644
--- a/litellm/integrations/opentelemetry.py
+++ b/litellm/integrations/opentelemetry.py
@@ -366,8 +366,6 @@ class OpenTelemetry(CustomLogger):
)
message = choice.get("message")
- if not isinstance(message, dict):
- message = message.dict()
tool_calls = message.get("tool_calls")
if tool_calls:
span.set_attribute(
diff --git a/litellm/integrations/test_httpx.py b/litellm/integrations/test_httpx.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/litellm/llms/predibase.py b/litellm/llms/predibase.py
index a3245cdac..66c28acee 100644
--- a/litellm/llms/predibase.py
+++ b/litellm/llms/predibase.py
@@ -3,6 +3,7 @@
from functools import partial
import os, types
+import traceback
import json
from enum import Enum
import requests, copy # type: ignore
@@ -242,12 +243,12 @@ class PredibaseChatCompletion(BaseLLM):
"details" in completion_response
and "tokens" in completion_response["details"]
):
- model_response.choices[0].finish_reason = completion_response[
- "details"
- ]["finish_reason"]
+ model_response.choices[0].finish_reason = map_finish_reason(
+ completion_response["details"]["finish_reason"]
+ )
sum_logprob = 0
for token in completion_response["details"]["tokens"]:
- if token["logprob"] != None:
+ if token["logprob"] is not None:
sum_logprob += token["logprob"]
model_response["choices"][0][
"message"
@@ -265,7 +266,7 @@ class PredibaseChatCompletion(BaseLLM):
):
sum_logprob = 0
for token in item["tokens"]:
- if token["logprob"] != None:
+ if token["logprob"] is not None:
sum_logprob += token["logprob"]
if len(item["generated_text"]) > 0:
message_obj = Message(
@@ -275,7 +276,7 @@ class PredibaseChatCompletion(BaseLLM):
else:
message_obj = Message(content=None)
choice_obj = Choices(
- finish_reason=item["finish_reason"],
+ finish_reason=map_finish_reason(item["finish_reason"]),
index=idx + 1,
message=message_obj,
)
@@ -285,10 +286,8 @@ class PredibaseChatCompletion(BaseLLM):
## CALCULATING USAGE
prompt_tokens = 0
try:
- prompt_tokens = len(
- encoding.encode(model_response["choices"][0]["message"]["content"])
- ) ##[TODO] use a model-specific tokenizer here
- except:
+ prompt_tokens = litellm.token_counter(messages=messages)
+ except Exception:
# this should remain non blocking we should not block a response returning if calculating usage fails
pass
output_text = model_response["choices"][0]["message"].get("content", "")
@@ -331,6 +330,7 @@ class PredibaseChatCompletion(BaseLLM):
logging_obj,
optional_params: dict,
tenant_id: str,
+ timeout: Union[float, httpx.Timeout],
acompletion=None,
litellm_params=None,
logger_fn=None,
@@ -340,6 +340,7 @@ class PredibaseChatCompletion(BaseLLM):
completion_url = ""
input_text = ""
base_url = "https://serving.app.predibase.com"
+
if "https" in model:
completion_url = model
elif api_base:
@@ -349,7 +350,7 @@ class PredibaseChatCompletion(BaseLLM):
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
- if optional_params.get("stream", False) == True:
+ if optional_params.get("stream", False) is True:
completion_url += "/generate_stream"
else:
completion_url += "/generate"
@@ -393,9 +394,9 @@ class PredibaseChatCompletion(BaseLLM):
},
)
## COMPLETION CALL
- if acompletion == True:
+ if acompletion is True:
### ASYNC STREAMING
- if stream == True:
+ if stream is True:
return self.async_streaming(
model=model,
messages=messages,
@@ -410,6 +411,7 @@ class PredibaseChatCompletion(BaseLLM):
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
+ timeout=timeout,
) # type: ignore
else:
### ASYNC COMPLETION
@@ -428,10 +430,11 @@ class PredibaseChatCompletion(BaseLLM):
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
+ timeout=timeout,
) # type: ignore
### SYNC STREAMING
- if stream == True:
+ if stream is True:
response = requests.post(
completion_url,
headers=headers,
@@ -452,7 +455,6 @@ class PredibaseChatCompletion(BaseLLM):
headers=headers,
data=json.dumps(data),
)
-
return self.process_response(
model=model,
response=response,
@@ -480,23 +482,26 @@ class PredibaseChatCompletion(BaseLLM):
stream,
data: dict,
optional_params: dict,
+ timeout: Union[float, httpx.Timeout],
litellm_params=None,
logger_fn=None,
headers={},
) -> ModelResponse:
- self.async_handler = AsyncHTTPHandler(
- timeout=httpx.Timeout(timeout=600.0, connect=5.0)
- )
+
+ async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=timeout))
try:
- response = await self.async_handler.post(
+ response = await async_handler.post(
api_base, headers=headers, data=json.dumps(data)
)
except httpx.HTTPStatusError as e:
raise PredibaseError(
- status_code=e.response.status_code, message=e.response.text
+ status_code=e.response.status_code,
+ message="HTTPStatusError - {}".format(e.response.text),
)
except Exception as e:
- raise PredibaseError(status_code=500, message=str(e))
+ raise PredibaseError(
+ status_code=500, message="{}\n{}".format(str(e), traceback.format_exc())
+ )
return self.process_response(
model=model,
response=response,
@@ -522,6 +527,7 @@ class PredibaseChatCompletion(BaseLLM):
api_key,
logging_obj,
data: dict,
+ timeout: Union[float, httpx.Timeout],
optional_params=None,
litellm_params=None,
logger_fn=None,
diff --git a/litellm/main.py b/litellm/main.py
index dd1fdb9f9..2c906e990 100644
--- a/litellm/main.py
+++ b/litellm/main.py
@@ -432,9 +432,9 @@ def mock_completion(
if isinstance(mock_response, openai.APIError):
raise mock_response
raise litellm.APIError(
- status_code=500, # type: ignore
- message=str(mock_response),
- llm_provider="openai", # type: ignore
+ status_code=getattr(mock_response, "status_code", 500), # type: ignore
+ message=getattr(mock_response, "text", str(mock_response)),
+ llm_provider=getattr(mock_response, "llm_provider", "openai"), # type: ignore
model=model, # type: ignore
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
)
@@ -1949,7 +1949,8 @@ def completion(
)
api_base = (
- optional_params.pop("api_base", None)
+ api_base
+ or optional_params.pop("api_base", None)
or optional_params.pop("base_url", None)
or litellm.api_base
or get_secret("PREDIBASE_API_BASE")
@@ -1977,12 +1978,13 @@ def completion(
custom_prompt_dict=custom_prompt_dict,
api_key=api_key,
tenant_id=tenant_id,
+ timeout=timeout,
)
if (
"stream" in optional_params
- and optional_params["stream"] == True
- and acompletion == False
+ and optional_params["stream"] is True
+ and acompletion is False
):
return _model_response
response = _model_response
diff --git a/litellm/model_prices_and_context_window_backup.json b/litellm/model_prices_and_context_window_backup.json
index 3fe089a6b..f2b292c92 100644
--- a/litellm/model_prices_and_context_window_backup.json
+++ b/litellm/model_prices_and_context_window_backup.json
@@ -3009,32 +3009,37 @@
"litellm_provider": "sagemaker",
"mode": "chat"
},
- "together-ai-up-to-3b": {
+ "together-ai-up-to-4b": {
"input_cost_per_token": 0.0000001,
"output_cost_per_token": 0.0000001,
"litellm_provider": "together_ai"
},
- "together-ai-3.1b-7b": {
+ "together-ai-4.1b-8b": {
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0000002,
"litellm_provider": "together_ai"
},
- "together-ai-7.1b-20b": {
+ "together-ai-8.1b-21b": {
"max_tokens": 1000,
- "input_cost_per_token": 0.0000004,
- "output_cost_per_token": 0.0000004,
+ "input_cost_per_token": 0.0000003,
+ "output_cost_per_token": 0.0000003,
"litellm_provider": "together_ai"
},
- "together-ai-20.1b-40b": {
+ "together-ai-21.1b-41b": {
"input_cost_per_token": 0.0000008,
"output_cost_per_token": 0.0000008,
"litellm_provider": "together_ai"
},
- "together-ai-40.1b-70b": {
+ "together-ai-41.1b-80b": {
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "together_ai"
},
+ "together-ai-81.1b-110b": {
+ "input_cost_per_token": 0.0000018,
+ "output_cost_per_token": 0.0000018,
+ "litellm_provider": "together_ai"
+ },
"together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1": {
"input_cost_per_token": 0.0000006,
"output_cost_per_token": 0.0000006,
diff --git a/litellm/proxy/_logging.py b/litellm/proxy/_logging.py
index f453cef39..655da7b29 100644
--- a/litellm/proxy/_logging.py
+++ b/litellm/proxy/_logging.py
@@ -1,7 +1,12 @@
import json
import logging
from logging import Formatter
-import sys
+import os
+from litellm import json_logs
+
+# Set default log level to INFO
+log_level = os.getenv("LITELLM_LOG", "INFO")
+numeric_level: str = getattr(logging, log_level.upper())
class JsonFormatter(Formatter):
@@ -16,6 +21,14 @@ class JsonFormatter(Formatter):
logger = logging.root
handler = logging.StreamHandler()
-handler.setFormatter(JsonFormatter())
+if json_logs:
+ handler.setFormatter(JsonFormatter())
+else:
+ formatter = logging.Formatter(
+ "\033[92m%(asctime)s - %(name)s:%(levelname)s\033[0m: %(filename)s:%(lineno)s - %(message)s",
+ datefmt="%H:%M:%S",
+ )
+
+ handler.setFormatter(formatter)
logger.handlers = [handler]
-logger.setLevel(logging.INFO)
+logger.setLevel(numeric_level)
diff --git a/litellm/proxy/_super_secret_config.yaml b/litellm/proxy/_super_secret_config.yaml
index 450d77b0a..5674abfe2 100644
--- a/litellm/proxy/_super_secret_config.yaml
+++ b/litellm/proxy/_super_secret_config.yaml
@@ -8,6 +8,17 @@ model_list:
- model_name: llama3-70b-8192
litellm_params:
model: groq/llama3-70b-8192
+- model_name: fake-openai-endpoint
+ litellm_params:
+ model: predibase/llama-3-8b-instruct
+ api_base: "http://0.0.0.0:8081"
+ api_key: os.environ/PREDIBASE_API_KEY
+ tenant_id: os.environ/PREDIBASE_TENANT_ID
+ max_retries: 0
+ temperature: 0.1
+ max_new_tokens: 256
+ return_full_text: false
+
# - litellm_params:
# api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
# api_key: os.environ/AZURE_EUROPE_API_KEY
@@ -57,6 +68,8 @@ router_settings:
litellm_settings:
success_callback: ["langfuse"]
cache: True
+ failure_callback: ["langfuse"]
+
general_settings:
alerting: ["email"]
diff --git a/litellm/proxy/proxy_server.py b/litellm/proxy/proxy_server.py
index 140948e51..924125b47 100644
--- a/litellm/proxy/proxy_server.py
+++ b/litellm/proxy/proxy_server.py
@@ -160,6 +160,7 @@ from litellm.proxy.auth.auth_checks import (
get_user_object,
allowed_routes_check,
get_actual_routes,
+ log_to_opentelemetry,
)
from litellm.llms.custom_httpx.httpx_handler import HTTPHandler
from litellm.exceptions import RejectedRequestError
@@ -368,6 +369,11 @@ from typing import Dict
api_key_header = APIKeyHeader(
name="Authorization", auto_error=False, description="Bearer token"
)
+azure_api_key_header = APIKeyHeader(
+ name="API-Key",
+ auto_error=False,
+ description="Some older versions of the openai Python package will send an API-Key header with just the API key ",
+)
user_api_base = None
user_model = None
user_debug = False
@@ -508,13 +514,19 @@ async def check_request_disconnection(request: Request, llm_api_call_task):
async def user_api_key_auth(
- request: Request, api_key: str = fastapi.Security(api_key_header)
+ request: Request,
+ api_key: str = fastapi.Security(api_key_header),
+ azure_api_key_header: str = fastapi.Security(azure_api_key_header),
) -> UserAPIKeyAuth:
global master_key, prisma_client, llm_model_list, user_custom_auth, custom_db_client, general_settings, proxy_logging_obj
try:
if isinstance(api_key, str):
passed_in_key = api_key
api_key = _get_bearer_token(api_key=api_key)
+
+ elif isinstance(azure_api_key_header, str):
+ api_key = azure_api_key_header
+
parent_otel_span: Optional[Span] = None
if open_telemetry_logger is not None:
parent_otel_span = open_telemetry_logger.tracer.start_span(
@@ -1495,7 +1507,7 @@ async def user_api_key_auth(
)
if valid_token is None:
# No token was found when looking up in the DB
- raise Exception("Invalid token passed")
+ raise Exception("Invalid proxy server token passed")
if valid_token_dict is not None:
if user_id_information is not None and _is_user_proxy_admin(
user_id_information
@@ -1528,6 +1540,14 @@ async def user_api_key_auth(
str(e)
)
)
+
+ # Log this exception to OTEL
+ if open_telemetry_logger is not None:
+ await open_telemetry_logger.async_post_call_failure_hook(
+ original_exception=e,
+ user_api_key_dict=UserAPIKeyAuth(parent_otel_span=parent_otel_span),
+ )
+
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, litellm.BudgetExceededError):
raise ProxyException(
@@ -7803,6 +7823,10 @@ async def get_global_spend_report(
default=None,
description="Time till which to view spend",
),
+ group_by: Optional[Literal["team", "customer"]] = fastapi.Query(
+ default="team",
+ description="Group spend by internal team or customer",
+ ),
):
"""
Get Daily Spend per Team, based on specific startTime and endTime. Per team, view usage by each key, model
@@ -7849,69 +7873,130 @@ async def get_global_spend_report(
f"Database not connected. Connect a database to your proxy - https://docs.litellm.ai/docs/simple_proxy#managing-auth---virtual-keys"
)
- # first get data from spend logs -> SpendByModelApiKey
- # then read data from "SpendByModelApiKey" to format the response obj
- sql_query = """
+ if group_by == "team":
+ # first get data from spend logs -> SpendByModelApiKey
+ # then read data from "SpendByModelApiKey" to format the response obj
+ sql_query = """
- WITH SpendByModelApiKey AS (
- SELECT
- date_trunc('day', sl."startTime") AS group_by_day,
- COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
- sl.model,
- sl.api_key,
- SUM(sl.spend) AS model_api_spend,
- SUM(sl.total_tokens) AS model_api_tokens
- FROM
- "LiteLLM_SpendLogs" sl
- LEFT JOIN
- "LiteLLM_TeamTable" tt
- ON
- sl.team_id = tt.team_id
- WHERE
- sl."startTime" BETWEEN $1::date AND $2::date
- GROUP BY
- date_trunc('day', sl."startTime"),
- tt.team_alias,
- sl.model,
- sl.api_key
- )
+ WITH SpendByModelApiKey AS (
+ SELECT
+ date_trunc('day', sl."startTime") AS group_by_day,
+ COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
+ sl.model,
+ sl.api_key,
+ SUM(sl.spend) AS model_api_spend,
+ SUM(sl.total_tokens) AS model_api_tokens
+ FROM
+ "LiteLLM_SpendLogs" sl
+ LEFT JOIN
+ "LiteLLM_TeamTable" tt
+ ON
+ sl.team_id = tt.team_id
+ WHERE
+ sl."startTime" BETWEEN $1::date AND $2::date
+ GROUP BY
+ date_trunc('day', sl."startTime"),
+ tt.team_alias,
+ sl.model,
+ sl.api_key
+ )
+ SELECT
+ group_by_day,
+ jsonb_agg(jsonb_build_object(
+ 'team_name', team_name,
+ 'total_spend', total_spend,
+ 'metadata', metadata
+ )) AS teams
+ FROM (
+ SELECT
+ group_by_day,
+ team_name,
+ SUM(model_api_spend) AS total_spend,
+ jsonb_agg(jsonb_build_object(
+ 'model', model,
+ 'api_key', api_key,
+ 'spend', model_api_spend,
+ 'total_tokens', model_api_tokens
+ )) AS metadata
+ FROM
+ SpendByModelApiKey
+ GROUP BY
+ group_by_day,
+ team_name
+ ) AS aggregated
+ GROUP BY
+ group_by_day
+ ORDER BY
+ group_by_day;
+ """
+
+ db_response = await prisma_client.db.query_raw(
+ sql_query, start_date_obj, end_date_obj
+ )
+ if db_response is None:
+ return []
+
+ return db_response
+
+ elif group_by == "customer":
+ sql_query = """
+
+ WITH SpendByModelApiKey AS (
+ SELECT
+ date_trunc('day', sl."startTime") AS group_by_day,
+ sl.end_user AS customer,
+ sl.model,
+ sl.api_key,
+ SUM(sl.spend) AS model_api_spend,
+ SUM(sl.total_tokens) AS model_api_tokens
+ FROM
+ "LiteLLM_SpendLogs" sl
+ WHERE
+ sl."startTime" BETWEEN $1::date AND $2::date
+ GROUP BY
+ date_trunc('day', sl."startTime"),
+ customer,
+ sl.model,
+ sl.api_key
+ )
SELECT
group_by_day,
jsonb_agg(jsonb_build_object(
- 'team_name', team_name,
+ 'customer', customer,
'total_spend', total_spend,
'metadata', metadata
- )) AS teams
- FROM (
- SELECT
- group_by_day,
- team_name,
- SUM(model_api_spend) AS total_spend,
- jsonb_agg(jsonb_build_object(
- 'model', model,
- 'api_key', api_key,
- 'spend', model_api_spend,
- 'total_tokens', model_api_tokens
- )) AS metadata
- FROM
- SpendByModelApiKey
- GROUP BY
- group_by_day,
- team_name
- ) AS aggregated
+ )) AS customers
+ FROM
+ (
+ SELECT
+ group_by_day,
+ customer,
+ SUM(model_api_spend) AS total_spend,
+ jsonb_agg(jsonb_build_object(
+ 'model', model,
+ 'api_key', api_key,
+ 'spend', model_api_spend,
+ 'total_tokens', model_api_tokens
+ )) AS metadata
+ FROM
+ SpendByModelApiKey
+ GROUP BY
+ group_by_day,
+ customer
+ ) AS aggregated
GROUP BY
group_by_day
ORDER BY
group_by_day;
- """
+ """
- db_response = await prisma_client.db.query_raw(
- sql_query, start_date_obj, end_date_obj
- )
- if db_response is None:
- return []
+ db_response = await prisma_client.db.query_raw(
+ sql_query, start_date_obj, end_date_obj
+ )
+ if db_response is None:
+ return []
- return db_response
+ return db_response
except Exception as e:
raise HTTPException(
diff --git a/litellm/router.py b/litellm/router.py
index bfd1dafe9..adf8f4897 100644
--- a/litellm/router.py
+++ b/litellm/router.py
@@ -2056,12 +2056,15 @@ class Router:
verbose_router_logger.debug(f"inside model fallbacks: {fallbacks}")
generic_fallback_idx: Optional[int] = None
## check for specific model group-specific fallbacks
- for idx, item in enumerate(fallbacks):
- if list(item.keys())[0] == model_group:
- fallback_model_group = item[model_group]
- break
- elif list(item.keys())[0] == "*":
- generic_fallback_idx = idx
+ if isinstance(fallbacks, list):
+ fallback_model_group = fallbacks
+ elif isinstance(fallbacks, dict):
+ for idx, item in enumerate(fallbacks):
+ if list(item.keys())[0] == model_group:
+ fallback_model_group = item[model_group]
+ break
+ elif list(item.keys())[0] == "*":
+ generic_fallback_idx = idx
## if none, check for generic fallback
if (
fallback_model_group is None
@@ -2310,13 +2313,16 @@ class Router:
verbose_router_logger.debug(f"inside model fallbacks: {fallbacks}")
fallback_model_group = None
generic_fallback_idx: Optional[int] = None
- ## check for specific model group-specific fallbacks
- for idx, item in enumerate(fallbacks):
- if list(item.keys())[0] == model_group:
- fallback_model_group = item[model_group]
- break
- elif list(item.keys())[0] == "*":
- generic_fallback_idx = idx
+ if isinstance(fallbacks, list):
+ fallback_model_group = fallbacks
+ elif isinstance(fallbacks, dict):
+ ## check for specific model group-specific fallbacks
+ for idx, item in enumerate(fallbacks):
+ if list(item.keys())[0] == model_group:
+ fallback_model_group = item[model_group]
+ break
+ elif list(item.keys())[0] == "*":
+ generic_fallback_idx = idx
## if none, check for generic fallback
if (
fallback_model_group is None
diff --git a/litellm/tests/test_completion.py b/litellm/tests/test_completion.py
index 4ac727cd2..2428cbf48 100644
--- a/litellm/tests/test_completion.py
+++ b/litellm/tests/test_completion.py
@@ -345,7 +345,7 @@ def test_completion_claude_3_function_call(model):
drop_params=True,
)
- # Add any assertions, here to check response args
+ # Add any assertions here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
@@ -530,6 +530,7 @@ def test_completion_cohere_command_r_plus_function_call():
messages=messages,
tools=tools,
tool_choice="auto",
+ force_single_step=True,
)
print(second_response)
except Exception as e:
diff --git a/litellm/tests/test_completion_cost.py b/litellm/tests/test_completion_cost.py
index 7820e2af3..c0be350f9 100644
--- a/litellm/tests/test_completion_cost.py
+++ b/litellm/tests/test_completion_cost.py
@@ -517,3 +517,51 @@ def test_groq_response_cost_tracking(is_streaming):
assert response_cost > 0.0
print(f"response_cost: {response_cost}")
+
+
+def test_together_ai_qwen_completion_cost():
+ input_kwargs = {
+ "completion_response": litellm.ModelResponse(
+ **{
+ "id": "890db0c33c4ef94b-SJC",
+ "choices": [
+ {
+ "finish_reason": "eos",
+ "index": 0,
+ "message": {
+ "content": "I am Qwen, a large language model created by Alibaba Cloud.",
+ "role": "assistant",
+ },
+ }
+ ],
+ "created": 1717900130,
+ "model": "together_ai/qwen/Qwen2-72B-Instruct",
+ "object": "chat.completion",
+ "system_fingerprint": None,
+ "usage": {
+ "completion_tokens": 15,
+ "prompt_tokens": 23,
+ "total_tokens": 38,
+ },
+ }
+ ),
+ "model": "qwen/Qwen2-72B-Instruct",
+ "prompt": "",
+ "messages": [],
+ "completion": "",
+ "total_time": 0.0,
+ "call_type": "completion",
+ "custom_llm_provider": "together_ai",
+ "region_name": None,
+ "size": None,
+ "quality": None,
+ "n": None,
+ "custom_cost_per_token": None,
+ "custom_cost_per_second": None,
+ }
+
+ response = litellm.cost_calculator.get_model_params_and_category(
+ model_name="qwen/Qwen2-72B-Instruct"
+ )
+
+ assert response == "together-ai-41.1b-80b"
diff --git a/litellm/tests/test_exceptions.py b/litellm/tests/test_exceptions.py
index ee695dcd7..1082dd2f8 100644
--- a/litellm/tests/test_exceptions.py
+++ b/litellm/tests/test_exceptions.py
@@ -3,6 +3,7 @@ import os
import sys
import traceback
import subprocess, asyncio
+from typing import Any
sys.path.insert(
0, os.path.abspath("../..")
@@ -19,6 +20,7 @@ from litellm import (
)
from concurrent.futures import ThreadPoolExecutor
import pytest
+from unittest.mock import patch, MagicMock
litellm.vertex_project = "pathrise-convert-1606954137718"
litellm.vertex_location = "us-central1"
@@ -655,3 +657,47 @@ def test_litellm_predibase_exception():
# accuracy_score = counts[True]/(counts[True] + counts[False])
# print(f"accuracy_score: {accuracy_score}")
+
+
+@pytest.mark.parametrize("provider", ["predibase"])
+def test_exception_mapping(provider):
+ """
+ For predibase, run through a set of mock exceptions
+
+ assert that they are being mapped correctly
+ """
+ litellm.set_verbose = True
+ error_map = {
+ 400: litellm.BadRequestError,
+ 401: litellm.AuthenticationError,
+ 404: litellm.NotFoundError,
+ 408: litellm.Timeout,
+ 429: litellm.RateLimitError,
+ 500: litellm.InternalServerError,
+ 503: litellm.ServiceUnavailableError,
+ }
+
+ for code, expected_exception in error_map.items():
+ mock_response = Exception()
+ setattr(mock_response, "text", "This is an error message")
+ setattr(mock_response, "llm_provider", provider)
+ setattr(mock_response, "status_code", code)
+
+ response: Any = None
+ try:
+ response = completion(
+ model="{}/test-model".format(provider),
+ messages=[{"role": "user", "content": "Hey, how's it going?"}],
+ mock_response=mock_response,
+ )
+ except expected_exception:
+ continue
+ except Exception as e:
+ response = "{}\n{}".format(str(e), traceback.format_exc())
+ pytest.fail(
+ "Did not raise expected exception. Expected={}, Return={},".format(
+ expected_exception, response
+ )
+ )
+
+ pass
diff --git a/litellm/tests/test_key_generate_prisma.py b/litellm/tests/test_key_generate_prisma.py
index 083d84c2b..2f439862e 100644
--- a/litellm/tests/test_key_generate_prisma.py
+++ b/litellm/tests/test_key_generate_prisma.py
@@ -272,7 +272,7 @@ def test_call_with_invalid_key(prisma_client):
except Exception as e:
print("Got Exception", e)
print(e.message)
- assert "Authentication Error, Invalid token passed" in e.message
+ assert "Authentication Error, Invalid proxy server token passed" in e.message
pass
diff --git a/litellm/tests/test_router_fallbacks.py b/litellm/tests/test_router_fallbacks.py
index 6e483b9fe..c6e0e5411 100644
--- a/litellm/tests/test_router_fallbacks.py
+++ b/litellm/tests/test_router_fallbacks.py
@@ -1059,3 +1059,53 @@ async def test_default_model_fallbacks(sync_mode, litellm_module_fallbacks):
assert isinstance(response, litellm.ModelResponse)
assert response.model is not None and response.model == "gpt-4o"
+
+
+@pytest.mark.parametrize("sync_mode", [True, False])
+@pytest.mark.asyncio
+async def test_client_side_fallbacks_list(sync_mode):
+ """
+
+ Tests Client Side Fallbacks
+
+ User can pass "fallbacks": ["gpt-3.5-turbo"] and this should work
+
+ """
+ router = Router(
+ model_list=[
+ {
+ "model_name": "bad-model",
+ "litellm_params": {
+ "model": "openai/my-bad-model",
+ "api_key": "my-bad-api-key",
+ },
+ },
+ {
+ "model_name": "my-good-model",
+ "litellm_params": {
+ "model": "gpt-4o",
+ "api_key": os.getenv("OPENAI_API_KEY"),
+ },
+ },
+ ],
+ )
+
+ if sync_mode:
+ response = router.completion(
+ model="bad-model",
+ messages=[{"role": "user", "content": "Hey, how's it going?"}],
+ fallbacks=["my-good-model"],
+ mock_testing_fallbacks=True,
+ mock_response="Hey! nice day",
+ )
+ else:
+ response = await router.acompletion(
+ model="bad-model",
+ messages=[{"role": "user", "content": "Hey, how's it going?"}],
+ fallbacks=["my-good-model"],
+ mock_testing_fallbacks=True,
+ mock_response="Hey! nice day",
+ )
+
+ assert isinstance(response, litellm.ModelResponse)
+ assert response.model is not None and response.model == "gpt-4o"
diff --git a/litellm/utils.py b/litellm/utils.py
index 52e94f28f..4602d8651 100644
--- a/litellm/utils.py
+++ b/litellm/utils.py
@@ -326,6 +326,22 @@ class Function(OpenAIObject):
super(Function, self).__init__(**data)
+ def __contains__(self, key):
+ # Define custom behavior for the 'in' operator
+ return hasattr(self, key)
+
+ def get(self, key, default=None):
+ # Custom .get() method to access attributes with a default value if the attribute doesn't exist
+ return getattr(self, key, default)
+
+ def __getitem__(self, key):
+ # Allow dictionary-style access to attributes
+ return getattr(self, key)
+
+ def __setitem__(self, key, value):
+ # Allow dictionary-style assignment of attributes
+ setattr(self, key, value)
+
class ChatCompletionDeltaToolCall(OpenAIObject):
id: Optional[str] = None
@@ -385,6 +401,22 @@ class ChatCompletionMessageToolCall(OpenAIObject):
else:
self.type = "function"
+ def __contains__(self, key):
+ # Define custom behavior for the 'in' operator
+ return hasattr(self, key)
+
+ def get(self, key, default=None):
+ # Custom .get() method to access attributes with a default value if the attribute doesn't exist
+ return getattr(self, key, default)
+
+ def __getitem__(self, key):
+ # Allow dictionary-style access to attributes
+ return getattr(self, key)
+
+ def __setitem__(self, key, value):
+ # Allow dictionary-style assignment of attributes
+ setattr(self, key, value)
+
class Message(OpenAIObject):
def __init__(
@@ -3929,54 +3961,6 @@ def client(original_function):
return wrapper
-####### USAGE CALCULATOR ################
-
-
-# Extract the number of billion parameters from the model name
-# only used for together_computer LLMs
-def get_model_params_and_category(model_name):
- import re
-
- model_name = model_name.lower()
- params_match = re.search(
- r"(\d+b)", model_name
- ) # catch all decimals like 3b, 70b, etc
- category = None
- if params_match != None:
- params_match = params_match.group(1)
- params_match = params_match.replace("b", "")
- params_billion = float(params_match)
- # Determine the category based on the number of parameters
- if params_billion <= 3.0:
- category = "together-ai-up-to-3b"
- elif params_billion <= 7.0:
- category = "together-ai-3.1b-7b"
- elif params_billion <= 20.0:
- category = "together-ai-7.1b-20b"
- elif params_billion <= 40.0:
- category = "together-ai-20.1b-40b"
- elif params_billion <= 70.0:
- category = "together-ai-40.1b-70b"
- return category
-
- return None
-
-
-def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
- # see https://replicate.com/pricing
- a100_40gb_price_per_second_public = 0.001150
- # for all litellm currently supported LLMs, almost all requests go to a100_80gb
- a100_80gb_price_per_second_public = (
- 0.001400 # assume all calls sent to A100 80GB for now
- )
- if total_time == 0.0: # total time is in ms
- start_time = completion_response["created"]
- end_time = getattr(completion_response, "ended", time.time())
- total_time = end_time - start_time
-
- return a100_80gb_price_per_second_public * total_time / 1000
-
-
@lru_cache(maxsize=128)
def _select_tokenizer(model: str):
if model in litellm.cohere_models and "command-r" in model:
@@ -4363,7 +4347,7 @@ def _cost_per_token_custom_pricing_helper(
def cost_per_token(
- model="",
+ model: str = "",
prompt_tokens=0,
completion_tokens=0,
response_time_ms=None,
@@ -4388,6 +4372,8 @@ def cost_per_token(
Returns:
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
"""
+ if model is None:
+ raise Exception("Invalid arg. Model cannot be none.")
## CUSTOM PRICING ##
response_cost = _cost_per_token_custom_pricing_helper(
prompt_tokens=prompt_tokens,
@@ -4560,213 +4546,6 @@ def cost_per_token(
)
-def completion_cost(
- completion_response=None,
- model=None,
- prompt="",
- messages: List = [],
- completion="",
- total_time=0.0, # used for replicate, sagemaker
- call_type: Literal[
- "embedding",
- "aembedding",
- "completion",
- "acompletion",
- "atext_completion",
- "text_completion",
- "image_generation",
- "aimage_generation",
- "moderation",
- "amoderation",
- "atranscription",
- "transcription",
- "aspeech",
- "speech",
- ] = "completion",
- ### REGION ###
- custom_llm_provider=None,
- region_name=None, # used for bedrock pricing
- ### IMAGE GEN ###
- size=None,
- quality=None,
- n=None, # number of images
- ### CUSTOM PRICING ###
- custom_cost_per_token: Optional[CostPerToken] = None,
- custom_cost_per_second: Optional[float] = None,
-) -> float:
- """
- Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
-
- Parameters:
- completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
-
- [OPTIONAL PARAMS]
- model (str): Optional. The name of the language model used in the completion calls
- prompt (str): Optional. The input prompt passed to the llm
- completion (str): Optional. The output completion text from the llm
- total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
- custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
- custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
-
- Returns:
- float: The cost in USD dollars for the completion based on the provided parameters.
-
- Exceptions:
- Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
-
-
- Note:
- - If completion_response is provided, the function extracts token information and the model name from it.
- - If completion_response is not provided, the function calculates token counts based on the model and input text.
- - The cost is calculated based on the model, prompt tokens, and completion tokens.
- - For certain models containing "togethercomputer" in the name, prices are based on the model size.
- - For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
- """
- try:
- if (
- (call_type == "aimage_generation" or call_type == "image_generation")
- and model is not None
- and isinstance(model, str)
- and len(model) == 0
- and custom_llm_provider == "azure"
- ):
- model = "dall-e-2" # for dall-e-2, azure expects an empty model name
- # Handle Inputs to completion_cost
- prompt_tokens = 0
- completion_tokens = 0
- custom_llm_provider = None
- if completion_response is not None:
- # get input/output tokens from completion_response
- prompt_tokens = completion_response.get("usage", {}).get("prompt_tokens", 0)
- completion_tokens = completion_response.get("usage", {}).get(
- "completion_tokens", 0
- )
- total_time = completion_response.get("_response_ms", 0)
- verbose_logger.debug(
- f"completion_response response ms: {completion_response.get('_response_ms')} "
- )
- model = model or completion_response.get(
- "model", None
- ) # check if user passed an override for model, if it's none check completion_response['model']
- if hasattr(completion_response, "_hidden_params"):
- if (
- completion_response._hidden_params.get("model", None) is not None
- and len(completion_response._hidden_params["model"]) > 0
- ):
- model = completion_response._hidden_params.get("model", model)
- custom_llm_provider = completion_response._hidden_params.get(
- "custom_llm_provider", ""
- )
- region_name = completion_response._hidden_params.get(
- "region_name", region_name
- )
- size = completion_response._hidden_params.get(
- "optional_params", {}
- ).get(
- "size", "1024-x-1024"
- ) # openai default
- quality = completion_response._hidden_params.get(
- "optional_params", {}
- ).get(
- "quality", "standard"
- ) # openai default
- n = completion_response._hidden_params.get("optional_params", {}).get(
- "n", 1
- ) # openai default
- else:
- if len(messages) > 0:
- prompt_tokens = token_counter(model=model, messages=messages)
- elif len(prompt) > 0:
- prompt_tokens = token_counter(model=model, text=prompt)
- completion_tokens = token_counter(model=model, text=completion)
- if model == None:
- raise ValueError(
- f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
- )
-
- if (
- call_type == CallTypes.image_generation.value
- or call_type == CallTypes.aimage_generation.value
- ):
- ### IMAGE GENERATION COST CALCULATION ###
- if custom_llm_provider == "vertex_ai":
- # https://cloud.google.com/vertex-ai/generative-ai/pricing
- # Vertex Charges Flat $0.20 per image
- return 0.020
-
- # fix size to match naming convention
- if "x" in size and "-x-" not in size:
- size = size.replace("x", "-x-")
- image_gen_model_name = f"{size}/{model}"
- image_gen_model_name_with_quality = image_gen_model_name
- if quality is not None:
- image_gen_model_name_with_quality = f"{quality}/{image_gen_model_name}"
- size = size.split("-x-")
- height = int(size[0]) # if it's 1024-x-1024 vs. 1024x1024
- width = int(size[1])
- verbose_logger.debug(f"image_gen_model_name: {image_gen_model_name}")
- verbose_logger.debug(
- f"image_gen_model_name_with_quality: {image_gen_model_name_with_quality}"
- )
- if image_gen_model_name in litellm.model_cost:
- return (
- litellm.model_cost[image_gen_model_name]["input_cost_per_pixel"]
- * height
- * width
- * n
- )
- elif image_gen_model_name_with_quality in litellm.model_cost:
- return (
- litellm.model_cost[image_gen_model_name_with_quality][
- "input_cost_per_pixel"
- ]
- * height
- * width
- * n
- )
- else:
- raise Exception(
- f"Model={image_gen_model_name} not found in completion cost model map"
- )
- # Calculate cost based on prompt_tokens, completion_tokens
- if (
- "togethercomputer" in model
- or "together_ai" in model
- or custom_llm_provider == "together_ai"
- ):
- # together ai prices based on size of llm
- # get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
- model = get_model_params_and_category(model)
- # replicate llms are calculate based on time for request running
- # see https://replicate.com/pricing
- elif (
- model in litellm.replicate_models or "replicate" in model
- ) and model not in litellm.model_cost:
- # for unmapped replicate model, default to replicate's time tracking logic
- return get_replicate_completion_pricing(completion_response, total_time)
-
- (
- prompt_tokens_cost_usd_dollar,
- completion_tokens_cost_usd_dollar,
- ) = cost_per_token(
- model=model,
- prompt_tokens=prompt_tokens,
- completion_tokens=completion_tokens,
- custom_llm_provider=custom_llm_provider,
- response_time_ms=total_time,
- region_name=region_name,
- custom_cost_per_second=custom_cost_per_second,
- custom_cost_per_token=custom_cost_per_token,
- )
- _final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
- print_verbose(
- f"final cost: {_final_cost}; prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}; completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
- )
- return _final_cost
- except Exception as e:
- raise e
-
-
def supports_httpx_timeout(custom_llm_provider: str) -> bool:
"""
Helper function to know if a provider implementation supports httpx timeout
@@ -8986,6 +8765,75 @@ def exception_type(
response=original_exception.response,
litellm_debug_info=extra_information,
)
+ elif hasattr(original_exception, "status_code"):
+ if original_exception.status_code == 500:
+ exception_mapping_worked = True
+ raise litellm.InternalServerError(
+ message=f"PredibaseException - {original_exception.message}",
+ llm_provider="predibase",
+ model=model,
+ )
+ elif original_exception.status_code == 401:
+ exception_mapping_worked = True
+ raise AuthenticationError(
+ message=f"PredibaseException - {original_exception.message}",
+ llm_provider="predibase",
+ model=model,
+ )
+ elif original_exception.status_code == 400:
+ exception_mapping_worked = True
+ raise BadRequestError(
+ message=f"PredibaseException - {original_exception.message}",
+ llm_provider="predibase",
+ model=model,
+ )
+ elif original_exception.status_code == 404:
+ exception_mapping_worked = True
+ raise NotFoundError(
+ message=f"PredibaseException - {original_exception.message}",
+ llm_provider="predibase",
+ model=model,
+ )
+ elif original_exception.status_code == 408:
+ exception_mapping_worked = True
+ raise Timeout(
+ message=f"PredibaseException - {original_exception.message}",
+ model=model,
+ llm_provider=custom_llm_provider,
+ litellm_debug_info=extra_information,
+ )
+ elif original_exception.status_code == 422:
+ exception_mapping_worked = True
+ raise BadRequestError(
+ message=f"PredibaseException - {original_exception.message}",
+ model=model,
+ llm_provider=custom_llm_provider,
+ litellm_debug_info=extra_information,
+ )
+ elif original_exception.status_code == 429:
+ exception_mapping_worked = True
+ raise RateLimitError(
+ message=f"PredibaseException - {original_exception.message}",
+ model=model,
+ llm_provider=custom_llm_provider,
+ litellm_debug_info=extra_information,
+ )
+ elif original_exception.status_code == 503:
+ exception_mapping_worked = True
+ raise ServiceUnavailableError(
+ message=f"PredibaseException - {original_exception.message}",
+ model=model,
+ llm_provider=custom_llm_provider,
+ litellm_debug_info=extra_information,
+ )
+ elif original_exception.status_code == 504: # gateway timeout error
+ exception_mapping_worked = True
+ raise Timeout(
+ message=f"PredibaseException - {original_exception.message}",
+ model=model,
+ llm_provider=custom_llm_provider,
+ litellm_debug_info=extra_information,
+ )
elif custom_llm_provider == "bedrock":
if (
"too many tokens" in error_str
diff --git a/model_prices_and_context_window.json b/model_prices_and_context_window.json
index 3fe089a6b..f2b292c92 100644
--- a/model_prices_and_context_window.json
+++ b/model_prices_and_context_window.json
@@ -3009,32 +3009,37 @@
"litellm_provider": "sagemaker",
"mode": "chat"
},
- "together-ai-up-to-3b": {
+ "together-ai-up-to-4b": {
"input_cost_per_token": 0.0000001,
"output_cost_per_token": 0.0000001,
"litellm_provider": "together_ai"
},
- "together-ai-3.1b-7b": {
+ "together-ai-4.1b-8b": {
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0000002,
"litellm_provider": "together_ai"
},
- "together-ai-7.1b-20b": {
+ "together-ai-8.1b-21b": {
"max_tokens": 1000,
- "input_cost_per_token": 0.0000004,
- "output_cost_per_token": 0.0000004,
+ "input_cost_per_token": 0.0000003,
+ "output_cost_per_token": 0.0000003,
"litellm_provider": "together_ai"
},
- "together-ai-20.1b-40b": {
+ "together-ai-21.1b-41b": {
"input_cost_per_token": 0.0000008,
"output_cost_per_token": 0.0000008,
"litellm_provider": "together_ai"
},
- "together-ai-40.1b-70b": {
+ "together-ai-41.1b-80b": {
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "together_ai"
},
+ "together-ai-81.1b-110b": {
+ "input_cost_per_token": 0.0000018,
+ "output_cost_per_token": 0.0000018,
+ "litellm_provider": "together_ai"
+ },
"together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1": {
"input_cost_per_token": 0.0000006,
"output_cost_per_token": 0.0000006,
diff --git a/pyproject.toml b/pyproject.toml
index b6deb0dac..8255ddf79 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
-version = "1.40.7"
+version = "1.40.8"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@@ -84,7 +84,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
-version = "1.40.7"
+version = "1.40.8"
version_files = [
"pyproject.toml:^version"
]
diff --git a/ruff.toml b/ruff.toml
index dfb323c1b..4894ab3fc 100644
--- a/ruff.toml
+++ b/ruff.toml
@@ -1,3 +1,3 @@
-ignore = ["F405"]
+ignore = ["F405", "E402"]
extend-select = ["E501"]
line-length = 120
diff --git a/ui/litellm-dashboard/src/components/chat_ui.tsx b/ui/litellm-dashboard/src/components/chat_ui.tsx
index 407e33dca..d96db60c4 100644
--- a/ui/litellm-dashboard/src/components/chat_ui.tsx
+++ b/ui/litellm-dashboard/src/components/chat_ui.tsx
@@ -119,9 +119,24 @@ const ChatUI: React.FC = ({
// Now, 'options' contains the list you wanted
console.log(options); // You can log it to verify the list
-
- // setModelInfo(options) should be inside the if block to avoid setting it when no data is available
- setModelInfo(options);
+
+ // if options.length > 0, only store unique values
+ if (options.length > 0) {
+ const uniqueModels = Array.from(new Set(options));
+
+ console.log("Unique models:", uniqueModels);
+
+ // sort uniqueModels alphabetically
+ uniqueModels.sort((a: any, b: any) => a.label.localeCompare(b.label));
+
+
+ console.log("Model info:", modelInfo);
+
+ // setModelInfo(options) should be inside the if block to avoid setting it when no data is available
+ setModelInfo(uniqueModels);
+ }
+
+
setSelectedModel(fetchedAvailableModels.data[0].id);
}
} catch (error) {
diff --git a/ui/litellm-dashboard/src/components/model_dashboard.tsx b/ui/litellm-dashboard/src/components/model_dashboard.tsx
index 73e5a7a8f..d16d8db13 100644
--- a/ui/litellm-dashboard/src/components/model_dashboard.tsx
+++ b/ui/litellm-dashboard/src/components/model_dashboard.tsx
@@ -1130,7 +1130,7 @@ const ModelDashboard: React.FC = ({
setSelectedAPIKey(key);
}}
>
- ✨ {key["key_alias"]} (Enterpise only Feature)
+ ✨ {key["key_alias"]} (Enterprise only Feature)
);
}
@@ -1165,7 +1165,7 @@ const ModelDashboard: React.FC = ({
setSelectedCustomer(user);
}}
>
- ✨ {user} (Enterpise only Feature)
+ ✨ {user} (Enterprise only Feature)
);
})
diff --git a/ui/litellm-dashboard/src/components/navbar.tsx b/ui/litellm-dashboard/src/components/navbar.tsx
index 4f587afe9..6f33d1691 100644
--- a/ui/litellm-dashboard/src/components/navbar.tsx
+++ b/ui/litellm-dashboard/src/components/navbar.tsx
@@ -114,7 +114,7 @@ const Navbar: React.FC = ({
textDecoration: "underline",
}}
>
- Get enterpise license
+ Get enterprise license
) : null}
diff --git a/ui/litellm-dashboard/src/components/usage.tsx b/ui/litellm-dashboard/src/components/usage.tsx
index 732df4524..ad1aa0e57 100644
--- a/ui/litellm-dashboard/src/components/usage.tsx
+++ b/ui/litellm-dashboard/src/components/usage.tsx
@@ -832,7 +832,7 @@ const UsagePage: React.FC = ({
// @ts-ignore
disabled={true}
>
- ✨ {tag} (Enterpise only Feature)
+ ✨ {tag} (Enterprise only Feature)
);
})}