forked from phoenix/litellm-mirror
refactor: fixing linting issues
This commit is contained in:
parent
ae35c13015
commit
45b6f8b853
25 changed files with 223 additions and 133 deletions
|
@ -76,8 +76,8 @@ class ContextWindowExceededError(BadRequestError): # type: ignore
|
|||
self.llm_provider = llm_provider
|
||||
super().__init__(
|
||||
message=self.message,
|
||||
model=self.model,
|
||||
llm_provider=self.llm_provider,
|
||||
model=self.model, # type: ignore
|
||||
llm_provider=self.llm_provider, # type: ignore
|
||||
response=response
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
@ -101,7 +101,7 @@ class APIError(APIError): # type: ignore
|
|||
self.model = model
|
||||
super().__init__(
|
||||
self.message,
|
||||
request=request
|
||||
request=request # type: ignore
|
||||
)
|
||||
|
||||
# raised if an invalid request (not get, delete, put, post) is made
|
||||
|
|
|
@ -5,7 +5,7 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse, Choices, Message
|
||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import httpx
|
||||
|
||||
class AlephAlphaError(Exception):
|
||||
|
@ -265,9 +265,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
import httpx
|
||||
|
@ -167,9 +167,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -7,11 +7,17 @@ from litellm import OpenAIConfig
|
|||
import httpx
|
||||
|
||||
class AzureOpenAIError(Exception):
|
||||
def __init__(self, status_code, message, request: httpx.Request, response: httpx.Response):
|
||||
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = request
|
||||
self.response = response
|
||||
if request:
|
||||
self.request = request
|
||||
else:
|
||||
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
|
||||
if response:
|
||||
self.response = response
|
||||
else:
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
@ -136,7 +142,7 @@ class AzureChatCompletion(BaseLLM):
|
|||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
|
@ -172,7 +178,7 @@ class AzureChatCompletion(BaseLLM):
|
|||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
completion_stream = response.iter_lines()
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=completion_stream, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
|
@ -194,7 +200,7 @@ class AzureChatCompletion(BaseLLM):
|
|||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise AzureOpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="azure",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
## This is a template base class to be used for adding new LLM providers via API calls
|
||||
import litellm
|
||||
import httpx, certifi, ssl
|
||||
from typing import Optional
|
||||
|
||||
class BaseLLM:
|
||||
_client_session = None
|
||||
_client_session: Optional[httpx.Client] = None
|
||||
def create_client_session(self):
|
||||
if litellm.client_session:
|
||||
_client_session = litellm.client_session
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
|
||||
class BasetenError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
|
@ -136,9 +136,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
from litellm.utils import ModelResponse, get_secret, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
import httpx
|
||||
|
||||
|
@ -424,9 +424,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
except BedrockError as e:
|
||||
exception_mapping_worked = True
|
||||
|
@ -497,6 +500,11 @@ def embedding(
|
|||
"total_tokens": input_tokens,
|
||||
}
|
||||
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=input_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=input_tokens + 0
|
||||
)
|
||||
model_response.usage = usage
|
||||
|
||||
return model_response
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time, traceback
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Choices, Message
|
||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import litellm
|
||||
import httpx
|
||||
|
||||
|
@ -186,9 +186,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
|
|
|
@ -6,7 +6,7 @@ import httpx, requests
|
|||
import time
|
||||
import litellm
|
||||
from typing import Callable, Dict, List, Any
|
||||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper
|
||||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, Usage
|
||||
from typing import Optional
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
|
@ -381,9 +381,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
model_response._hidden_params["original_response"] = completion_response
|
||||
return model_response
|
||||
except HuggingfaceError as e:
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time, traceback
|
||||
from typing import Callable, Optional, List
|
||||
from litellm.utils import ModelResponse, Choices, Message
|
||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import litellm
|
||||
|
||||
class MaritalkError(Exception):
|
||||
|
@ -145,9 +145,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
|
|
|
@ -5,7 +5,7 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
|
||||
class NLPCloudError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
|
@ -171,9 +171,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
class OobaboogaError(Exception):
|
||||
|
@ -111,9 +111,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -2,16 +2,22 @@ from typing import Optional, Union
|
|||
import types
|
||||
import httpx
|
||||
from .base import BaseLLM
|
||||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object
|
||||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object, Usage
|
||||
from typing import Callable, Optional
|
||||
import aiohttp
|
||||
|
||||
class OpenAIError(Exception):
|
||||
def __init__(self, status_code, message, request: httpx.Request, response: httpx.Response):
|
||||
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = request
|
||||
self.response = response
|
||||
if request:
|
||||
self.request = request
|
||||
else:
|
||||
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
|
||||
if response:
|
||||
self.response = response
|
||||
else:
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
@ -264,13 +270,13 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
model: str
|
||||
):
|
||||
with self._client_session.stream(
|
||||
url=f"{api_base}",
|
||||
url=f"{api_base}", # type: ignore
|
||||
json=data,
|
||||
headers=headers,
|
||||
method="POST"
|
||||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text()) # type: ignore
|
||||
|
||||
completion_stream = response.iter_lines()
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=completion_stream, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
|
@ -292,7 +298,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text()) # type: ignore
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
|
@ -383,7 +389,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
try:
|
||||
## RESPONSE OBJECT
|
||||
if response_object is None or model_response_object is None:
|
||||
raise ValueError(message="Error in response object format")
|
||||
raise ValueError("Error in response object format")
|
||||
choice_list=[]
|
||||
for idx, choice in enumerate(response_object["choices"]):
|
||||
message = Message(content=choice["text"], role="assistant")
|
||||
|
@ -406,11 +412,11 @@ class OpenAITextCompletion(BaseLLM):
|
|||
raise e
|
||||
|
||||
def completion(self,
|
||||
model: Optional[str]=None,
|
||||
messages: Optional[list]=None,
|
||||
model_response: Optional[ModelResponse]=None,
|
||||
model_response: ModelResponse,
|
||||
api_key: str,
|
||||
model: str,
|
||||
messages: list,
|
||||
print_verbose: Optional[Callable]=None,
|
||||
api_key: Optional[str]=None,
|
||||
api_base: Optional[str]=None,
|
||||
logging_obj=None,
|
||||
acompletion: bool = False,
|
||||
|
@ -449,7 +455,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
if optional_params.get("stream", False):
|
||||
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
||||
else:
|
||||
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model)
|
||||
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model) # type: ignore
|
||||
elif optional_params.get("stream", False):
|
||||
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
||||
else:
|
||||
|
@ -459,7 +465,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text, request=self._client_session.request, response=response)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
|
@ -521,7 +527,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
|
||||
for transformed_chunk in streamwrapper:
|
||||
|
@ -542,7 +548,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
method="POST"
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
|
|
|
@ -3,7 +3,7 @@ import json
|
|||
from enum import Enum
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, get_secret, Choices, Message
|
||||
from litellm.utils import ModelResponse, get_secret, Choices, Message, Usage
|
||||
import litellm
|
||||
import sys
|
||||
|
||||
|
@ -157,9 +157,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = "palm/" + model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -5,7 +5,7 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
class PetalsError(Exception):
|
||||
|
@ -176,9 +176,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -3,7 +3,7 @@ import json
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
import litellm
|
||||
import httpx
|
||||
|
||||
|
@ -261,9 +261,12 @@ def completion(
|
|||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(model_response["choices"][0]["message"].get("content", "")))
|
||||
model_response["model"] = "replicate/" + model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
from litellm.utils import ModelResponse, get_secret, Usage
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
import httpx
|
||||
|
@ -172,9 +172,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -5,7 +5,7 @@ import requests
|
|||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
class TogetherAIError(Exception):
|
||||
|
@ -182,9 +182,12 @@ def completion(
|
|||
model_response.choices[0].finish_reason = completion_response["output"]["choices"][0]["finish_reason"]
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
import litellm
|
||||
|
||||
class VertexAIError(Exception):
|
||||
|
@ -150,10 +150,12 @@ def completion(
|
|||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Any
|
||||
from litellm.utils import ModelResponse
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
llm = None
|
||||
class VLLMError(Exception):
|
||||
|
@ -90,9 +90,12 @@ def completion(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def batch_completions(
|
||||
|
@ -170,9 +173,12 @@ def batch_completions(
|
|||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response.usage.completion_tokens = completion_tokens
|
||||
model_response.usage.prompt_tokens = prompt_tokens
|
||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
final_outputs.append(model_response)
|
||||
return final_outputs
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ from typing import Any
|
|||
from functools import partial
|
||||
import dotenv, traceback, random, asyncio, time, contextvars
|
||||
from copy import deepcopy
|
||||
import httpx
|
||||
import litellm
|
||||
from litellm import ( # type: ignore
|
||||
client,
|
||||
|
@ -838,14 +839,14 @@ def completion(
|
|||
)
|
||||
## COMPLETION CALL
|
||||
openai.api_key = api_key # set key for deep infra
|
||||
openai.base_url = api_base # use the deepinfra api base
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base, # use the deepinfra api base
|
||||
api_type="openai",
|
||||
api_version=api_version, # default None
|
||||
**optional_params,
|
||||
response = openai.chat.completions.create(
|
||||
model=model, # type: ignore
|
||||
messages=messages, # type: ignore
|
||||
api_type="openai", # type: ignore
|
||||
api_version=api_version, # type: ignore
|
||||
**optional_params, # type: ignore
|
||||
)
|
||||
except Exception as e:
|
||||
## LOGGING - log the original exception returned
|
||||
|
@ -932,7 +933,7 @@ def completion(
|
|||
elif model in litellm.openrouter_models or custom_llm_provider == "openrouter":
|
||||
openai.api_type = "openai"
|
||||
# not sure if this will work after someone first uses another API
|
||||
openai.api_base = (
|
||||
openai.base_url = (
|
||||
litellm.api_base
|
||||
if litellm.api_base is not None
|
||||
else "https://openrouter.ai/api/v1"
|
||||
|
@ -963,9 +964,9 @@ def completion(
|
|||
logging.pre_call(input=messages, api_key=openai.api_key, additional_args={"complete_input_dict": data, "headers": headers})
|
||||
## COMPLETION CALL
|
||||
if headers:
|
||||
response = openai.ChatCompletion.create(
|
||||
headers=headers,
|
||||
**data,
|
||||
response = openai.chat.completions.create(
|
||||
headers=headers, # type: ignore
|
||||
**data, # type: ignore
|
||||
)
|
||||
else:
|
||||
openrouter_site_url = get_secret("OR_SITE_URL")
|
||||
|
@ -976,11 +977,11 @@ def completion(
|
|||
# if openrouter_app_name is None, set it to liteLLM
|
||||
if openrouter_app_name is None:
|
||||
openrouter_app_name = "liteLLM"
|
||||
response = openai.ChatCompletion.create(
|
||||
headers={
|
||||
"HTTP-Referer": openrouter_site_url, # To identify your site
|
||||
"X-Title": openrouter_app_name, # To identify your app
|
||||
},
|
||||
response = openai.chat.completions.create( # type: ignore
|
||||
extra_headers=httpx.Headers({ # type: ignore
|
||||
"HTTP-Referer": openrouter_site_url, # type: ignore
|
||||
"X-Title": openrouter_app_name, # type: ignore
|
||||
}), # type: ignore
|
||||
**data,
|
||||
)
|
||||
## LOGGING
|
||||
|
@ -1961,7 +1962,7 @@ def text_completion(
|
|||
futures = [executor.submit(process_prompt, i, individual_prompt) for i, individual_prompt in enumerate(prompt)]
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
responses[i] = future.result()
|
||||
text_completion_response["choices"] = responses
|
||||
text_completion_response.choices = responses
|
||||
|
||||
return text_completion_response
|
||||
# else:
|
||||
|
@ -2012,10 +2013,10 @@ def moderation(input: str, api_key: Optional[str]=None):
|
|||
get_secret("OPENAI_API_KEY")
|
||||
)
|
||||
openai.api_key = api_key
|
||||
openai.api_type = "open_ai"
|
||||
openai.api_type = "open_ai" # type: ignore
|
||||
openai.api_version = None
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
response = openai.Moderation.create(input)
|
||||
openai.base_url = "https://api.openai.com/v1"
|
||||
response = openai.moderations.create(input=input)
|
||||
return response
|
||||
|
||||
####### HELPER FUNCTIONS ################
|
||||
|
|
|
@ -2,9 +2,9 @@
|
|||
# it makes async Completion requests with streaming
|
||||
import openai
|
||||
|
||||
openai.api_base = "http://0.0.0.0:8000"
|
||||
openai.base_url = "http://0.0.0.0:8000"
|
||||
openai.api_key = "temp-key"
|
||||
print(openai.api_base)
|
||||
print(openai.base_url)
|
||||
|
||||
async def test_async_completion():
|
||||
response = await openai.Completion.acreate(
|
||||
|
|
|
@ -1,8 +1,4 @@
|
|||
try:
|
||||
from openai import AuthenticationError, BadRequestError, RateLimitError, OpenAIError
|
||||
except:
|
||||
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, OpenAIError
|
||||
|
||||
from openai import AuthenticationError, BadRequestError, RateLimitError, OpenAIError
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
|
|
@ -17,10 +17,7 @@ from concurrent import futures
|
|||
from inspect import iscoroutinefunction
|
||||
from functools import wraps
|
||||
from threading import Thread
|
||||
try:
|
||||
from openai import Timeout
|
||||
except:
|
||||
from openai.error import Timeout
|
||||
from openai import Timeout
|
||||
|
||||
|
||||
def timeout(timeout_duration: float = 0.0, exception_to_raise=Timeout):
|
||||
|
|
|
@ -39,12 +39,8 @@ from .integrations.weights_biases import WeightsBiasesLogger
|
|||
from .integrations.custom_logger import CustomLogger
|
||||
from .integrations.langfuse import LangFuseLogger
|
||||
from .integrations.litedebugger import LiteDebugger
|
||||
try:
|
||||
from openai import OpenAIError as OriginalError
|
||||
from openai._models import BaseModel as OpenAIObject
|
||||
except:
|
||||
from openai.error import OpenAIError as OriginalError
|
||||
from openai.openai_object import OpenAIObject
|
||||
from openai import OpenAIError as OriginalError
|
||||
from openai._models import BaseModel as OpenAIObject
|
||||
from .exceptions import (
|
||||
AuthenticationError,
|
||||
BadRequestError,
|
||||
|
@ -353,6 +349,22 @@ class TextChoices(OpenAIObject):
|
|||
self.logprobs = []
|
||||
else:
|
||||
self.logprobs = logprobs
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
return hasattr(self, key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
||||
return getattr(self, key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Allow dictionary-style access to attributes
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Allow dictionary-style assignment of attributes
|
||||
setattr(self, key, value)
|
||||
|
||||
class TextCompletionResponse(OpenAIObject):
|
||||
"""
|
||||
|
@ -398,6 +410,22 @@ class TextCompletionResponse(OpenAIObject):
|
|||
self.usage = Usage()
|
||||
self._hidden_params = {} # used in case users want to access the original model response
|
||||
super(TextCompletionResponse, self).__init__(**params)
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
return hasattr(self, key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
||||
return getattr(self, key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Allow dictionary-style access to attributes
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Allow dictionary-style assignment of attributes
|
||||
setattr(self, key, value)
|
||||
|
||||
############################################################
|
||||
def print_verbose(print_statement):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue