refactor: add black formatting

This commit is contained in:
Krrish Dholakia 2023-12-25 14:10:38 +05:30
parent b87d630b0a
commit 4905929de3
156 changed files with 19723 additions and 10869 deletions

View file

@ -12,13 +12,15 @@ import time, logging
import json, traceback, ast
from typing import Optional, Literal, List
def print_verbose(print_statement):
try:
if litellm.set_verbose:
print(print_statement) # noqa
print(print_statement) # noqa
except:
pass
class BaseCache:
def set_cache(self, key, value, **kwargs):
raise NotImplementedError
@ -45,13 +47,13 @@ class InMemoryCache(BaseCache):
self.cache_dict.pop(key, None)
return None
original_cached_response = self.cache_dict[key]
try:
try:
cached_response = json.loads(original_cached_response)
except:
except:
cached_response = original_cached_response
return cached_response
return None
def flush_cache(self):
self.cache_dict.clear()
self.ttl_dict.clear()
@ -60,17 +62,18 @@ class InMemoryCache(BaseCache):
class RedisCache(BaseCache):
def __init__(self, host=None, port=None, password=None, **kwargs):
import redis
# if users don't provider one, use the default litellm cache
from ._redis import get_redis_client
redis_kwargs = {}
if host is not None:
if host is not None:
redis_kwargs["host"] = host
if port is not None:
redis_kwargs["port"] = port
if password is not None:
if password is not None:
redis_kwargs["password"] = password
redis_kwargs.update(kwargs)
self.redis_client = get_redis_client(**redis_kwargs)
@ -88,13 +91,19 @@ class RedisCache(BaseCache):
try:
print_verbose(f"Get Redis Cache: key: {key}")
cached_response = self.redis_client.get(key)
print_verbose(f"Got Redis Cache: key: {key}, cached_response {cached_response}")
print_verbose(
f"Got Redis Cache: key: {key}, cached_response {cached_response}"
)
if cached_response != None:
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_response.decode("utf-8") # Convert bytes to string
try:
cached_response = json.loads(cached_response) # Convert string to dictionary
except:
cached_response = cached_response.decode(
"utf-8"
) # Convert bytes to string
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
return cached_response
except Exception as e:
@ -105,34 +114,40 @@ class RedisCache(BaseCache):
def flush_cache(self):
self.redis_client.flushall()
class DualCache(BaseCache):
class DualCache(BaseCache):
"""
This updates both Redis and an in-memory cache simultaneously.
When data is updated or inserted, it is written to both the in-memory cache + Redis.
This updates both Redis and an in-memory cache simultaneously.
When data is updated or inserted, it is written to both the in-memory cache + Redis.
This ensures that even if Redis hasn't been updated yet, the in-memory cache reflects the most recent data.
"""
def __init__(self, in_memory_cache: Optional[InMemoryCache] =None, redis_cache: Optional[RedisCache] =None) -> None:
def __init__(
self,
in_memory_cache: Optional[InMemoryCache] = None,
redis_cache: Optional[RedisCache] = None,
) -> None:
super().__init__()
# If in_memory_cache is not provided, use the default InMemoryCache
self.in_memory_cache = in_memory_cache or InMemoryCache()
# If redis_cache is not provided, use the default RedisCache
self.redis_cache = redis_cache
def set_cache(self, key, value, **kwargs):
# Update both Redis and in-memory cache
try:
try:
print_verbose(f"set cache: key: {key}; value: {value}")
if self.in_memory_cache is not None:
self.in_memory_cache.set_cache(key, value, **kwargs)
if self.redis_cache is not None:
self.redis_cache.set_cache(key, value, **kwargs)
except Exception as e:
except Exception as e:
print_verbose(e)
def get_cache(self, key, **kwargs):
# Try to fetch from in-memory cache first
try:
try:
print_verbose(f"get cache: cache key: {key}")
result = None
if self.in_memory_cache is not None:
@ -141,7 +156,7 @@ class DualCache(BaseCache):
if in_memory_result is not None:
result = in_memory_result
if self.redis_cache is not None:
if self.redis_cache is not None:
# If not found in in-memory cache, try fetching from Redis
redis_result = self.redis_cache.get_cache(key, **kwargs)
@ -153,25 +168,28 @@ class DualCache(BaseCache):
print_verbose(f"get cache: cache result: {result}")
return result
except Exception as e:
except Exception as e:
traceback.print_exc()
def flush_cache(self):
if self.in_memory_cache is not None:
self.in_memory_cache.flush_cache()
if self.redis_cache is not None:
self.redis_cache.flush_cache()
#### LiteLLM.Completion / Embedding Cache ####
class Cache:
def __init__(
self,
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs
self,
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs,
):
"""
Initializes the cache based on the given type.
@ -200,7 +218,7 @@ class Cache:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
self.supported_call_types = supported_call_types # default to ["completion", "acompletion", "embedding", "aembedding"]
self.supported_call_types = supported_call_types # default to ["completion", "acompletion", "embedding", "aembedding"]
def get_cache_key(self, *args, **kwargs):
"""
@ -215,18 +233,37 @@ class Cache:
"""
cache_key = ""
print_verbose(f"\nGetting Cache key. Kwargs: {kwargs}")
# for streaming, we use preset_cache_key. It's created in wrapper(), we do this because optional params like max_tokens, get transformed for bedrock -> max_new_tokens
if kwargs.get("litellm_params", {}).get("preset_cache_key", None) is not None:
print_verbose(f"\nReturning preset cache key: {cache_key}")
return kwargs.get("litellm_params", {}).get("preset_cache_key", None)
# sort kwargs by keys, since model: [gpt-4, temperature: 0.2, max_tokens: 200] == [temperature: 0.2, max_tokens: 200, model: gpt-4]
completion_kwargs = ["model", "messages", "temperature", "top_p", "n", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "response_format", "seed", "tools", "tool_choice"]
embedding_only_kwargs = ["input", "encoding_format"] # embedding kwargs = model, input, user, encoding_format. Model, user are checked in completion_kwargs
completion_kwargs = [
"model",
"messages",
"temperature",
"top_p",
"n",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"response_format",
"seed",
"tools",
"tool_choice",
]
embedding_only_kwargs = [
"input",
"encoding_format",
] # embedding kwargs = model, input, user, encoding_format. Model, user are checked in completion_kwargs
# combined_kwargs - NEEDS to be ordered across get_cache_key(). Do not use a set()
combined_kwargs = completion_kwargs + embedding_only_kwargs
combined_kwargs = completion_kwargs + embedding_only_kwargs
for param in combined_kwargs:
# ignore litellm params here
if param in kwargs:
@ -241,8 +278,8 @@ class Cache:
model_group = metadata.get("model_group", None)
caching_groups = metadata.get("caching_groups", None)
if caching_groups:
for group in caching_groups:
if model_group in group:
for group in caching_groups:
if model_group in group:
caching_group = group
break
if litellm_params is not None:
@ -251,23 +288,34 @@ class Cache:
model_group = metadata.get("model_group", None)
caching_groups = metadata.get("caching_groups", None)
if caching_groups:
for group in caching_groups:
if model_group in group:
for group in caching_groups:
if model_group in group:
caching_group = group
break
param_value = caching_group or model_group or kwargs[param] # use caching_group, if set then model_group if it exists, else use kwargs["model"]
param_value = (
caching_group or model_group or kwargs[param]
) # use caching_group, if set then model_group if it exists, else use kwargs["model"]
else:
if kwargs[param] is None:
continue # ignore None params
continue # ignore None params
param_value = kwargs[param]
cache_key+= f"{str(param)}: {str(param_value)}"
cache_key += f"{str(param)}: {str(param_value)}"
print_verbose(f"\nCreated cache key: {cache_key}")
return cache_key
def generate_streaming_content(self, content):
chunk_size = 5 # Adjust the chunk size as needed
for i in range(0, len(content), chunk_size):
yield {'choices': [{'delta': {'role': 'assistant', 'content': content[i:i + chunk_size]}}]}
yield {
"choices": [
{
"delta": {
"role": "assistant",
"content": content[i : i + chunk_size],
}
}
]
}
time.sleep(0.02)
def get_cache(self, *args, **kwargs):
@ -319,4 +367,4 @@ class Cache:
pass
async def _async_add_cache(self, result, *args, **kwargs):
self.add_cache(result, *args, **kwargs)
self.add_cache(result, *args, **kwargs)