refactor: add black formatting

This commit is contained in:
Krrish Dholakia 2023-12-25 14:10:38 +05:30
parent b87d630b0a
commit 4905929de3
156 changed files with 19723 additions and 10869 deletions

View file

@ -4,81 +4,100 @@ import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
import litellm
import litellm
import httpx
from .prompt_templates.factory import prompt_factory, custom_prompt
class ReplicateError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://api.replicate.com/v1/deployments")
self.request = httpx.Request(
method="POST", url="https://api.replicate.com/v1/deployments"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class ReplicateConfig():
class ReplicateConfig:
"""
Reference: https://replicate.com/meta/llama-2-70b-chat/api
- `prompt` (string): The prompt to send to the model.
- `system_prompt` (string): The system prompt to send to the model. This is prepended to the prompt and helps guide system behavior. Default value: `You are a helpful assistant`.
- `max_new_tokens` (integer): Maximum number of tokens to generate. Typically, a word is made up of 2-3 tokens. Default value: `128`.
- `min_new_tokens` (integer): Minimum number of tokens to generate. To disable, set to `-1`. A word is usually 2-3 tokens. Default value: `-1`.
- `temperature` (number): Adjusts the randomness of outputs. Values greater than 1 increase randomness, 0 is deterministic, and 0.75 is a reasonable starting value. Default value: `0.75`.
- `top_p` (number): During text decoding, it samples from the top `p` percentage of most likely tokens. Reduce this to ignore less probable tokens. Default value: `0.9`.
- `top_k` (integer): During text decoding, samples from the top `k` most likely tokens. Reduce this to ignore less probable tokens. Default value: `50`.
- `stop_sequences` (string): A comma-separated list of sequences to stop generation at. For example, inputting '<end>,<stop>' will cease generation at the first occurrence of either 'end' or '<stop>'.
- `seed` (integer): This is the seed for the random generator. Leave it blank to randomize the seed.
- `debug` (boolean): If set to `True`, it provides debugging output in logs.
Please note that Replicate's mapping of these parameters can be inconsistent across different models, indicating that not all of these parameters may be available for use with all models.
"""
system_prompt: Optional[str]=None
max_new_tokens: Optional[int]=None
min_new_tokens: Optional[int]=None
temperature: Optional[int]=None
top_p: Optional[int]=None
top_k: Optional[int]=None
stop_sequences: Optional[str]=None
seed: Optional[int]=None
debug: Optional[bool]=None
def __init__(self,
system_prompt: Optional[str]=None,
max_new_tokens: Optional[int]=None,
min_new_tokens: Optional[int]=None,
temperature: Optional[int]=None,
top_p: Optional[int]=None,
top_k: Optional[int]=None,
stop_sequences: Optional[str]=None,
seed: Optional[int]=None,
debug: Optional[bool]=None) -> None:
system_prompt: Optional[str] = None
max_new_tokens: Optional[int] = None
min_new_tokens: Optional[int] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
stop_sequences: Optional[str] = None
seed: Optional[int] = None
debug: Optional[bool] = None
def __init__(
self,
system_prompt: Optional[str] = None,
max_new_tokens: Optional[int] = None,
min_new_tokens: Optional[int] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
stop_sequences: Optional[str] = None,
seed: Optional[int] = None,
debug: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
# Function to start a prediction and get the prediction URL
def start_prediction(version_id, input_data, api_token, api_base, logging_obj, print_verbose):
def start_prediction(
version_id, input_data, api_token, api_base, logging_obj, print_verbose
):
base_url = api_base
if "deployments" in version_id:
print_verbose("\nLiteLLM: Request to custom replicate deployment")
@ -88,7 +107,7 @@ def start_prediction(version_id, input_data, api_token, api_base, logging_obj, p
headers = {
"Authorization": f"Token {api_token}",
"Content-Type": "application/json"
"Content-Type": "application/json",
}
initial_prediction_data = {
@ -98,24 +117,33 @@ def start_prediction(version_id, input_data, api_token, api_base, logging_obj, p
## LOGGING
logging_obj.pre_call(
input=input_data["prompt"],
api_key="",
additional_args={"complete_input_dict": initial_prediction_data, "headers": headers, "api_base": base_url},
input=input_data["prompt"],
api_key="",
additional_args={
"complete_input_dict": initial_prediction_data,
"headers": headers,
"api_base": base_url,
},
)
response = requests.post(f"{base_url}/predictions", json=initial_prediction_data, headers=headers)
response = requests.post(
f"{base_url}/predictions", json=initial_prediction_data, headers=headers
)
if response.status_code == 201:
response_data = response.json()
return response_data.get("urls", {}).get("get")
else:
raise ReplicateError(response.status_code, f"Failed to start prediction {response.text}")
raise ReplicateError(
response.status_code, f"Failed to start prediction {response.text}"
)
# Function to handle prediction response (non-streaming)
def handle_prediction_response(prediction_url, api_token, print_verbose):
output_string = ""
headers = {
"Authorization": f"Token {api_token}",
"Content-Type": "application/json"
"Content-Type": "application/json",
}
status = ""
@ -127,18 +155,22 @@ def handle_prediction_response(prediction_url, api_token, print_verbose):
if response.status_code == 200:
response_data = response.json()
if "output" in response_data:
output_string = "".join(response_data['output'])
output_string = "".join(response_data["output"])
print_verbose(f"Non-streamed output:{output_string}")
status = response_data.get('status', None)
status = response_data.get("status", None)
logs = response_data.get("logs", "")
if status == "failed":
replicate_error = response_data.get("error", "")
raise ReplicateError(status_code=400, message=f"Error: {replicate_error}, \nReplicate logs:{logs}")
raise ReplicateError(
status_code=400,
message=f"Error: {replicate_error}, \nReplicate logs:{logs}",
)
else:
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
print_verbose("Replicate: Failed to fetch prediction status and output.")
return output_string, logs
# Function to handle prediction response (streaming)
def handle_prediction_response_streaming(prediction_url, api_token, print_verbose):
previous_output = ""
@ -146,30 +178,34 @@ def handle_prediction_response_streaming(prediction_url, api_token, print_verbos
headers = {
"Authorization": f"Token {api_token}",
"Content-Type": "application/json"
"Content-Type": "application/json",
}
status = ""
while True and (status not in ["succeeded", "failed", "canceled"]):
time.sleep(0.5) # prevent being rate limited by replicate
time.sleep(0.5) # prevent being rate limited by replicate
print_verbose(f"replicate: polling endpoint: {prediction_url}")
response = requests.get(prediction_url, headers=headers)
if response.status_code == 200:
response_data = response.json()
status = response_data['status']
status = response_data["status"]
if "output" in response_data:
output_string = "".join(response_data['output'])
new_output = output_string[len(previous_output):]
output_string = "".join(response_data["output"])
new_output = output_string[len(previous_output) :]
print_verbose(f"New chunk: {new_output}")
yield {"output": new_output, "status": status}
previous_output = output_string
status = response_data['status']
status = response_data["status"]
if status == "failed":
replicate_error = response_data.get("error", "")
raise ReplicateError(status_code=400, message=f"Error: {replicate_error}")
raise ReplicateError(
status_code=400, message=f"Error: {replicate_error}"
)
else:
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
print_verbose(f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}")
print_verbose(
f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}"
)
# Function to extract version ID from model string
def model_to_version_id(model):
@ -178,11 +214,12 @@ def model_to_version_id(model):
return split_model[1]
return model
# Main function for prediction completion
def completion(
model: str,
messages: list,
api_base: str,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
logging_obj,
@ -196,35 +233,37 @@ def completion(
# Start a prediction and get the prediction URL
version_id = model_to_version_id(model)
## Load Config
config = litellm.ReplicateConfig.get_config()
for k, v in config.items():
if k not in optional_params: # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
config = litellm.ReplicateConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
system_prompt = None
if optional_params is not None and "supports_system_prompt" in optional_params:
supports_sys_prompt = optional_params.pop("supports_system_prompt")
else:
supports_sys_prompt = False
if supports_sys_prompt:
for i in range(len(messages)):
if messages[i]["role"] == "system":
first_sys_message = messages.pop(i)
system_prompt = first_sys_message["content"]
break
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", {}),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
bos_token=model_prompt_details.get("bos_token", ""),
eos_token=model_prompt_details.get("eos_token", ""),
messages=messages,
)
role_dict=model_prompt_details.get("roles", {}),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
bos_token=model_prompt_details.get("bos_token", ""),
eos_token=model_prompt_details.get("eos_token", ""),
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
@ -233,43 +272,58 @@ def completion(
input_data = {
"prompt": prompt,
"system_prompt": system_prompt,
**optional_params
**optional_params,
}
# Otherwise, use the prompt as is
else:
input_data = {
"prompt": prompt,
**optional_params
}
input_data = {"prompt": prompt, **optional_params}
## COMPLETION CALL
## Replicate Compeltion calls have 2 steps
## Step1: Start Prediction: gets a prediction url
## Step2: Poll prediction url for response
## Step2: is handled with and without streaming
model_response["created"] = int(time.time()) # for pricing this must remain right before calling api
prediction_url = start_prediction(version_id, input_data, api_key, api_base, logging_obj=logging_obj, print_verbose=print_verbose)
model_response["created"] = int(
time.time()
) # for pricing this must remain right before calling api
prediction_url = start_prediction(
version_id,
input_data,
api_key,
api_base,
logging_obj=logging_obj,
print_verbose=print_verbose,
)
print_verbose(prediction_url)
# Handle the prediction response (streaming or non-streaming)
if "stream" in optional_params and optional_params["stream"] == True:
print_verbose("streaming request")
return handle_prediction_response_streaming(prediction_url, api_key, print_verbose)
return handle_prediction_response_streaming(
prediction_url, api_key, print_verbose
)
else:
result, logs = handle_prediction_response(prediction_url, api_key, print_verbose)
model_response["ended"] = time.time() # for pricing this must remain right after calling api
result, logs = handle_prediction_response(
prediction_url, api_key, print_verbose
)
model_response[
"ended"
] = time.time() # for pricing this must remain right after calling api
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=result,
additional_args={"complete_input_dict": input_data,"logs": logs, "api_base": prediction_url, },
input=prompt,
api_key="",
original_response=result,
additional_args={
"complete_input_dict": input_data,
"logs": logs,
"api_base": prediction_url,
},
)
print_verbose(f"raw model_response: {result}")
if len(result) == 0: # edge case, where result from replicate is empty
if len(result) == 0: # edge case, where result from replicate is empty
result = " "
## Building RESPONSE OBJECT
@ -278,12 +332,14 @@ def completion(
# Calculate usage
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(model_response["choices"][0]["message"].get("content", "")))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["model"] = "replicate/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response