forked from phoenix/litellm-mirror
refactor: add black formatting
This commit is contained in:
parent
b87d630b0a
commit
4905929de3
156 changed files with 19723 additions and 10869 deletions
|
@ -14,6 +14,7 @@ import litellm
|
|||
from litellm import embedding, completion
|
||||
from litellm.caching import Cache
|
||||
import random
|
||||
|
||||
# litellm.set_verbose=True
|
||||
|
||||
messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
||||
|
@ -22,23 +23,30 @@ messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
|||
import random
|
||||
import string
|
||||
|
||||
|
||||
def generate_random_word(length=4):
|
||||
letters = string.ascii_lowercase
|
||||
return ''.join(random.choice(letters) for _ in range(length))
|
||||
return "".join(random.choice(letters) for _ in range(length))
|
||||
|
||||
|
||||
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
||||
def test_caching_v2(): # test in memory cache
|
||||
|
||||
|
||||
def test_caching_v2(): # test in memory cache
|
||||
try:
|
||||
litellm.set_verbose=True
|
||||
litellm.set_verbose = True
|
||||
litellm.cache = Cache()
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
litellm.cache = None # disable cache
|
||||
litellm.cache = None # disable cache
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
if response2['choices'][0]['message']['content'] != response1['choices'][0]['message']['content']:
|
||||
if (
|
||||
response2["choices"][0]["message"]["content"]
|
||||
!= response1["choices"][0]["message"]["content"]
|
||||
):
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
|
@ -46,12 +54,14 @@ def test_caching_v2(): # test in memory cache
|
|||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test_caching_v2()
|
||||
|
||||
|
||||
|
||||
def test_caching_with_models_v2():
|
||||
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
|
||||
messages = [
|
||||
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
|
||||
]
|
||||
litellm.cache = Cache()
|
||||
print("test2 for caching")
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
||||
|
@ -63,34 +73,51 @@ def test_caching_with_models_v2():
|
|||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
||||
if (
|
||||
response3["choices"][0]["message"]["content"]
|
||||
== response2["choices"][0]["message"]["content"]
|
||||
):
|
||||
# if models are different, it should not return cached response
|
||||
print(f"response2: {response2}")
|
||||
print(f"response3: {response3}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']:
|
||||
if (
|
||||
response1["choices"][0]["message"]["content"]
|
||||
!= response2["choices"][0]["message"]["content"]
|
||||
):
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
|
||||
|
||||
# test_caching_with_models_v2()
|
||||
|
||||
embedding_large_text = """
|
||||
embedding_large_text = (
|
||||
"""
|
||||
small text
|
||||
""" * 5
|
||||
"""
|
||||
* 5
|
||||
)
|
||||
|
||||
|
||||
# # test_caching_with_models()
|
||||
def test_embedding_caching():
|
||||
import time
|
||||
|
||||
litellm.cache = Cache()
|
||||
text_to_embed = [embedding_large_text]
|
||||
start_time = time.time()
|
||||
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
||||
embedding1 = embedding(
|
||||
model="text-embedding-ada-002", input=text_to_embed, caching=True
|
||||
)
|
||||
end_time = time.time()
|
||||
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
||||
|
||||
time.sleep(1)
|
||||
start_time = time.time()
|
||||
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
||||
embedding2 = embedding(
|
||||
model="text-embedding-ada-002", input=text_to_embed, caching=True
|
||||
)
|
||||
end_time = time.time()
|
||||
print(f"embedding2: {embedding2}")
|
||||
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
||||
|
@ -98,29 +125,30 @@ def test_embedding_caching():
|
|||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
|
||||
print(f"embedding1: {embedding1}")
|
||||
print(f"embedding2: {embedding2}")
|
||||
pytest.fail("Error occurred: Embedding caching failed")
|
||||
|
||||
|
||||
# test_embedding_caching()
|
||||
|
||||
|
||||
def test_embedding_caching_azure():
|
||||
print("Testing azure embedding caching")
|
||||
import time
|
||||
|
||||
litellm.cache = Cache()
|
||||
text_to_embed = [embedding_large_text]
|
||||
|
||||
api_key = os.environ['AZURE_API_KEY']
|
||||
api_base = os.environ['AZURE_API_BASE']
|
||||
api_version = os.environ['AZURE_API_VERSION']
|
||||
|
||||
os.environ['AZURE_API_VERSION'] = ""
|
||||
os.environ['AZURE_API_BASE'] = ""
|
||||
os.environ['AZURE_API_KEY'] = ""
|
||||
api_key = os.environ["AZURE_API_KEY"]
|
||||
api_base = os.environ["AZURE_API_BASE"]
|
||||
api_version = os.environ["AZURE_API_VERSION"]
|
||||
|
||||
os.environ["AZURE_API_VERSION"] = ""
|
||||
os.environ["AZURE_API_BASE"] = ""
|
||||
os.environ["AZURE_API_KEY"] = ""
|
||||
|
||||
start_time = time.time()
|
||||
print("AZURE CONFIGS")
|
||||
|
@ -133,7 +161,7 @@ def test_embedding_caching_azure():
|
|||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
caching=True
|
||||
caching=True,
|
||||
)
|
||||
end_time = time.time()
|
||||
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
||||
|
@ -146,7 +174,7 @@ def test_embedding_caching_azure():
|
|||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
caching=True
|
||||
caching=True,
|
||||
)
|
||||
end_time = time.time()
|
||||
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
||||
|
@ -154,15 +182,16 @@ def test_embedding_caching_azure():
|
|||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
|
||||
print(f"embedding1: {embedding1}")
|
||||
print(f"embedding2: {embedding2}")
|
||||
pytest.fail("Error occurred: Embedding caching failed")
|
||||
|
||||
os.environ['AZURE_API_VERSION'] = api_version
|
||||
os.environ['AZURE_API_BASE'] = api_base
|
||||
os.environ['AZURE_API_KEY'] = api_key
|
||||
os.environ["AZURE_API_VERSION"] = api_version
|
||||
os.environ["AZURE_API_BASE"] = api_base
|
||||
os.environ["AZURE_API_KEY"] = api_key
|
||||
|
||||
|
||||
# test_embedding_caching_azure()
|
||||
|
||||
|
@ -170,13 +199,28 @@ def test_embedding_caching_azure():
|
|||
def test_redis_cache_completion():
|
||||
litellm.set_verbose = False
|
||||
|
||||
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
|
||||
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
|
||||
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||
random_number = random.randint(
|
||||
1, 100000
|
||||
) # add a random number to ensure it's always adding / reading from cache
|
||||
messages = [
|
||||
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
|
||||
]
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
)
|
||||
print("test2 for caching")
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20)
|
||||
response3 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5)
|
||||
response1 = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
|
||||
)
|
||||
response2 = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
|
||||
)
|
||||
response3 = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5
|
||||
)
|
||||
response4 = completion(model="command-nightly", messages=messages, caching=True)
|
||||
|
||||
print("\nresponse 1", response1)
|
||||
|
@ -192,49 +236,88 @@ def test_redis_cache_completion():
|
|||
1 & 3 should be different, since input params are diff
|
||||
1 & 4 should be diff, since models are diff
|
||||
"""
|
||||
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']: # 1 and 2 should be the same
|
||||
if (
|
||||
response1["choices"][0]["message"]["content"]
|
||||
!= response2["choices"][0]["message"]["content"]
|
||||
): # 1 and 2 should be the same
|
||||
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
if response1['choices'][0]['message']['content'] == response3['choices'][0]['message']['content']:
|
||||
if (
|
||||
response1["choices"][0]["message"]["content"]
|
||||
== response3["choices"][0]["message"]["content"]
|
||||
):
|
||||
# if input params like seed, max_tokens are diff it should NOT be a cache hit
|
||||
print(f"response1: {response1}")
|
||||
print(f"response3: {response3}")
|
||||
pytest.fail(f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:")
|
||||
if response1['choices'][0]['message']['content'] == response4['choices'][0]['message']['content']:
|
||||
pytest.fail(
|
||||
f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:"
|
||||
)
|
||||
if (
|
||||
response1["choices"][0]["message"]["content"]
|
||||
== response4["choices"][0]["message"]["content"]
|
||||
):
|
||||
# if models are different, it should not return cached response
|
||||
print(f"response1: {response1}")
|
||||
print(f"response4: {response4}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
|
||||
|
||||
# test_redis_cache_completion()
|
||||
|
||||
|
||||
def test_redis_cache_completion_stream():
|
||||
try:
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
litellm.callbacks = []
|
||||
litellm.set_verbose = True
|
||||
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
|
||||
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
|
||||
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||
random_number = random.randint(
|
||||
1, 100000
|
||||
) # add a random number to ensure it's always adding / reading from cache
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"write a one sentence poem about: {random_number}",
|
||||
}
|
||||
]
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
)
|
||||
print("test for caching, streaming + completion")
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
|
||||
response1 = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=0.2,
|
||||
stream=True,
|
||||
)
|
||||
response_1_content = ""
|
||||
for chunk in response1:
|
||||
print(chunk)
|
||||
response_1_content += chunk.choices[0].delta.content or ""
|
||||
print(response_1_content)
|
||||
time.sleep(0.5)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
|
||||
response2 = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=0.2,
|
||||
stream=True,
|
||||
)
|
||||
response_2_content = ""
|
||||
for chunk in response2:
|
||||
print(chunk)
|
||||
response_2_content += chunk.choices[0].delta.content or ""
|
||||
print("\nresponse 1", response_1_content)
|
||||
print("\nresponse 2", response_2_content)
|
||||
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
assert (
|
||||
response_1_content == response_2_content
|
||||
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
litellm.success_callback = []
|
||||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
|
@ -247,99 +330,171 @@ def test_redis_cache_completion_stream():
|
|||
|
||||
1 & 2 should be exactly the same
|
||||
"""
|
||||
|
||||
|
||||
# test_redis_cache_completion_stream()
|
||||
|
||||
|
||||
def test_redis_cache_acompletion_stream():
|
||||
import asyncio
|
||||
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
random_word = generate_random_word()
|
||||
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_word}"}]
|
||||
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"write a one sentence poem about: {random_word}",
|
||||
}
|
||||
]
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
)
|
||||
print("test for caching, streaming + completion")
|
||||
response_1_content = ""
|
||||
response_2_content = ""
|
||||
|
||||
async def call1():
|
||||
nonlocal response_1_content
|
||||
response1 = await litellm.acompletion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=1, stream=True)
|
||||
nonlocal response_1_content
|
||||
response1 = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=1,
|
||||
stream=True,
|
||||
)
|
||||
async for chunk in response1:
|
||||
print(chunk)
|
||||
response_1_content += chunk.choices[0].delta.content or ""
|
||||
print(response_1_content)
|
||||
|
||||
asyncio.run(call1())
|
||||
time.sleep(0.5)
|
||||
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
||||
|
||||
async def call2():
|
||||
nonlocal response_2_content
|
||||
response2 = await litellm.acompletion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=1, stream=True)
|
||||
response2 = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=1,
|
||||
stream=True,
|
||||
)
|
||||
async for chunk in response2:
|
||||
print(chunk)
|
||||
response_2_content += chunk.choices[0].delta.content or ""
|
||||
print(response_2_content)
|
||||
|
||||
asyncio.run(call2())
|
||||
print("\nresponse 1", response_1_content)
|
||||
print("\nresponse 2", response_2_content)
|
||||
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
assert (
|
||||
response_1_content == response_2_content
|
||||
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
except Exception as e:
|
||||
print(e)
|
||||
raise e
|
||||
|
||||
|
||||
# test_redis_cache_acompletion_stream()
|
||||
|
||||
|
||||
def test_redis_cache_acompletion_stream_bedrock():
|
||||
import asyncio
|
||||
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
random_word = generate_random_word()
|
||||
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_word}"}]
|
||||
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"write a one sentence poem about: {random_word}",
|
||||
}
|
||||
]
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
)
|
||||
print("test for caching, streaming + completion")
|
||||
response_1_content = ""
|
||||
response_2_content = ""
|
||||
|
||||
async def call1():
|
||||
nonlocal response_1_content
|
||||
response1 = await litellm.acompletion(model="bedrock/anthropic.claude-v1", messages=messages, max_tokens=40, temperature=1, stream=True)
|
||||
nonlocal response_1_content
|
||||
response1 = await litellm.acompletion(
|
||||
model="bedrock/anthropic.claude-v1",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=1,
|
||||
stream=True,
|
||||
)
|
||||
async for chunk in response1:
|
||||
print(chunk)
|
||||
response_1_content += chunk.choices[0].delta.content or ""
|
||||
print(response_1_content)
|
||||
|
||||
asyncio.run(call1())
|
||||
time.sleep(0.5)
|
||||
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
||||
|
||||
async def call2():
|
||||
nonlocal response_2_content
|
||||
response2 = await litellm.acompletion(model="bedrock/anthropic.claude-v1", messages=messages, max_tokens=40, temperature=1, stream=True)
|
||||
response2 = await litellm.acompletion(
|
||||
model="bedrock/anthropic.claude-v1",
|
||||
messages=messages,
|
||||
max_tokens=40,
|
||||
temperature=1,
|
||||
stream=True,
|
||||
)
|
||||
async for chunk in response2:
|
||||
print(chunk)
|
||||
response_2_content += chunk.choices[0].delta.content or ""
|
||||
print(response_2_content)
|
||||
|
||||
asyncio.run(call2())
|
||||
print("\nresponse 1", response_1_content)
|
||||
print("\nresponse 2", response_2_content)
|
||||
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
assert (
|
||||
response_1_content == response_2_content
|
||||
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
||||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
except Exception as e:
|
||||
print(e)
|
||||
raise e
|
||||
|
||||
|
||||
# test_redis_cache_acompletion_stream_bedrock()
|
||||
# redis cache with custom keys
|
||||
def custom_get_cache_key(*args, **kwargs):
|
||||
# return key to use for your cache:
|
||||
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
|
||||
# return key to use for your cache:
|
||||
key = (
|
||||
kwargs.get("model", "")
|
||||
+ str(kwargs.get("messages", ""))
|
||||
+ str(kwargs.get("temperature", ""))
|
||||
+ str(kwargs.get("logit_bias", ""))
|
||||
)
|
||||
return key
|
||||
|
||||
|
||||
def test_custom_redis_cache_with_key():
|
||||
messages = [{"role": "user", "content": "write a one line story"}]
|
||||
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
)
|
||||
litellm.cache.get_cache_key = custom_get_cache_key
|
||||
|
||||
local_cache = {}
|
||||
|
@ -356,54 +511,72 @@ def test_custom_redis_cache_with_key():
|
|||
|
||||
# patch this redis cache get and set call
|
||||
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
|
||||
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False, num_retries=3)
|
||||
response1 = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=1,
|
||||
caching=True,
|
||||
num_retries=3,
|
||||
)
|
||||
response2 = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=1,
|
||||
caching=True,
|
||||
num_retries=3,
|
||||
)
|
||||
response3 = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=1,
|
||||
caching=False,
|
||||
num_retries=3,
|
||||
)
|
||||
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
print(f"response3: {response3}")
|
||||
|
||||
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
||||
if (
|
||||
response3["choices"][0]["message"]["content"]
|
||||
== response2["choices"][0]["message"]["content"]
|
||||
):
|
||||
pytest.fail(f"Error occurred:")
|
||||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
|
||||
|
||||
# test_custom_redis_cache_with_key()
|
||||
|
||||
|
||||
def test_cache_override():
|
||||
# test if we can override the cache, when `caching=False` but litellm.cache = Cache() is set
|
||||
# in this case it should not return cached responses
|
||||
# in this case it should not return cached responses
|
||||
litellm.cache = Cache()
|
||||
print("Testing cache override")
|
||||
litellm.set_verbose=True
|
||||
litellm.set_verbose = True
|
||||
|
||||
# test embedding
|
||||
response1 = embedding(
|
||||
model = "text-embedding-ada-002",
|
||||
input=[
|
||||
"hello who are you"
|
||||
],
|
||||
caching = False
|
||||
model="text-embedding-ada-002", input=["hello who are you"], caching=False
|
||||
)
|
||||
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
response2 = embedding(
|
||||
model = "text-embedding-ada-002",
|
||||
input=[
|
||||
"hello who are you"
|
||||
],
|
||||
caching = False
|
||||
model="text-embedding-ada-002", input=["hello who are you"], caching=False
|
||||
)
|
||||
|
||||
end_time = time.time()
|
||||
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
||||
|
||||
assert end_time - start_time > 0.1 # ensure 2nd response comes in over 0.1s. This should not be cached.
|
||||
# test_cache_override()
|
||||
assert (
|
||||
end_time - start_time > 0.1
|
||||
) # ensure 2nd response comes in over 0.1s. This should not be cached.
|
||||
|
||||
|
||||
# test_cache_override()
|
||||
|
||||
|
||||
def test_custom_redis_cache_params():
|
||||
|
@ -411,17 +584,17 @@ def test_custom_redis_cache_params():
|
|||
try:
|
||||
litellm.cache = Cache(
|
||||
type="redis",
|
||||
host=os.environ['REDIS_HOST'],
|
||||
port=os.environ['REDIS_PORT'],
|
||||
password=os.environ['REDIS_PASSWORD'],
|
||||
db = 0,
|
||||
host=os.environ["REDIS_HOST"],
|
||||
port=os.environ["REDIS_PORT"],
|
||||
password=os.environ["REDIS_PASSWORD"],
|
||||
db=0,
|
||||
ssl=True,
|
||||
ssl_certfile="./redis_user.crt",
|
||||
ssl_keyfile="./redis_user_private.key",
|
||||
ssl_ca_certs="./redis_ca.pem",
|
||||
)
|
||||
|
||||
print(litellm.cache.cache.redis_client)
|
||||
print(litellm.cache.cache.redis_client)
|
||||
litellm.cache = None
|
||||
litellm.success_callback = []
|
||||
litellm._async_success_callback = []
|
||||
|
@ -431,58 +604,126 @@ def test_custom_redis_cache_params():
|
|||
|
||||
def test_get_cache_key():
|
||||
from litellm.caching import Cache
|
||||
|
||||
try:
|
||||
print("Testing get_cache_key")
|
||||
cache_instance = Cache()
|
||||
cache_key = cache_instance.get_cache_key(**{'model': 'gpt-3.5-turbo', 'messages': [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}], 'max_tokens': 40, 'temperature': 0.2, 'stream': True, 'litellm_call_id': 'ffe75e7e-8a07-431f-9a74-71a5b9f35f0b', 'litellm_logging_obj': {}}
|
||||
cache_key = cache_instance.get_cache_key(
|
||||
**{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{"role": "user", "content": "write a one sentence poem about: 7510"}
|
||||
],
|
||||
"max_tokens": 40,
|
||||
"temperature": 0.2,
|
||||
"stream": True,
|
||||
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
|
||||
"litellm_logging_obj": {},
|
||||
}
|
||||
)
|
||||
cache_key_2 = cache_instance.get_cache_key(**{'model': 'gpt-3.5-turbo', 'messages': [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}], 'max_tokens': 40, 'temperature': 0.2, 'stream': True, 'litellm_call_id': 'ffe75e7e-8a07-431f-9a74-71a5b9f35f0b', 'litellm_logging_obj': {}}
|
||||
cache_key_2 = cache_instance.get_cache_key(
|
||||
**{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{"role": "user", "content": "write a one sentence poem about: 7510"}
|
||||
],
|
||||
"max_tokens": 40,
|
||||
"temperature": 0.2,
|
||||
"stream": True,
|
||||
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
|
||||
"litellm_logging_obj": {},
|
||||
}
|
||||
)
|
||||
assert cache_key == "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]temperature: 0.2max_tokens: 40"
|
||||
assert cache_key == cache_key_2, f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
|
||||
assert (
|
||||
cache_key
|
||||
== "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]temperature: 0.2max_tokens: 40"
|
||||
)
|
||||
assert (
|
||||
cache_key == cache_key_2
|
||||
), f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
|
||||
|
||||
embedding_cache_key = cache_instance.get_cache_key(
|
||||
**{'model': 'azure/azure-embedding-model', 'api_base': 'https://openai-gpt-4-test-v-1.openai.azure.com/',
|
||||
'api_key': '', 'api_version': '2023-07-01-preview',
|
||||
'timeout': None, 'max_retries': 0, 'input': ['hi who is ishaan'],
|
||||
'caching': True,
|
||||
'client': "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>"
|
||||
**{
|
||||
"model": "azure/azure-embedding-model",
|
||||
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
||||
"api_key": "",
|
||||
"api_version": "2023-07-01-preview",
|
||||
"timeout": None,
|
||||
"max_retries": 0,
|
||||
"input": ["hi who is ishaan"],
|
||||
"caching": True,
|
||||
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
||||
}
|
||||
)
|
||||
|
||||
print(embedding_cache_key)
|
||||
|
||||
assert embedding_cache_key == "model: azure/azure-embedding-modelinput: ['hi who is ishaan']", f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
|
||||
assert (
|
||||
embedding_cache_key
|
||||
== "model: azure/azure-embedding-modelinput: ['hi who is ishaan']"
|
||||
), f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
|
||||
|
||||
# Proxy - embedding cache, test if embedding key, gets model_group and not model
|
||||
embedding_cache_key_2 = cache_instance.get_cache_key(
|
||||
**{'model': 'azure/azure-embedding-model', 'api_base': 'https://openai-gpt-4-test-v-1.openai.azure.com/',
|
||||
'api_key': '', 'api_version': '2023-07-01-preview',
|
||||
'timeout': None, 'max_retries': 0, 'input': ['hi who is ishaan'],
|
||||
'caching': True,
|
||||
'client': "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
||||
'proxy_server_request': {'url': 'http://0.0.0.0:8000/embeddings',
|
||||
'method': 'POST',
|
||||
'headers':
|
||||
{'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'content-type': 'application/json',
|
||||
'content-length': '80'},
|
||||
'body': {'model': 'azure-embedding-model', 'input': ['hi who is ishaan']}},
|
||||
'user': None,
|
||||
'metadata': {'user_api_key': None,
|
||||
'headers': {'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'content-type': 'application/json', 'content-length': '80'},
|
||||
'model_group': 'EMBEDDING_MODEL_GROUP',
|
||||
'deployment': 'azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview'},
|
||||
'model_info': {'mode': 'embedding', 'base_model': 'text-embedding-ada-002', 'id': '20b2b515-f151-4dd5-a74f-2231e2f54e29'},
|
||||
'litellm_call_id': '2642e009-b3cd-443d-b5dd-bb7d56123b0e', 'litellm_logging_obj': '<litellm.utils.Logging object at 0x12f1bddb0>'}
|
||||
**{
|
||||
"model": "azure/azure-embedding-model",
|
||||
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
||||
"api_key": "",
|
||||
"api_version": "2023-07-01-preview",
|
||||
"timeout": None,
|
||||
"max_retries": 0,
|
||||
"input": ["hi who is ishaan"],
|
||||
"caching": True,
|
||||
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
||||
"proxy_server_request": {
|
||||
"url": "http://0.0.0.0:8000/embeddings",
|
||||
"method": "POST",
|
||||
"headers": {
|
||||
"host": "0.0.0.0:8000",
|
||||
"user-agent": "curl/7.88.1",
|
||||
"accept": "*/*",
|
||||
"content-type": "application/json",
|
||||
"content-length": "80",
|
||||
},
|
||||
"body": {
|
||||
"model": "azure-embedding-model",
|
||||
"input": ["hi who is ishaan"],
|
||||
},
|
||||
},
|
||||
"user": None,
|
||||
"metadata": {
|
||||
"user_api_key": None,
|
||||
"headers": {
|
||||
"host": "0.0.0.0:8000",
|
||||
"user-agent": "curl/7.88.1",
|
||||
"accept": "*/*",
|
||||
"content-type": "application/json",
|
||||
"content-length": "80",
|
||||
},
|
||||
"model_group": "EMBEDDING_MODEL_GROUP",
|
||||
"deployment": "azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview",
|
||||
},
|
||||
"model_info": {
|
||||
"mode": "embedding",
|
||||
"base_model": "text-embedding-ada-002",
|
||||
"id": "20b2b515-f151-4dd5-a74f-2231e2f54e29",
|
||||
},
|
||||
"litellm_call_id": "2642e009-b3cd-443d-b5dd-bb7d56123b0e",
|
||||
"litellm_logging_obj": "<litellm.utils.Logging object at 0x12f1bddb0>",
|
||||
}
|
||||
)
|
||||
|
||||
print(embedding_cache_key_2)
|
||||
assert embedding_cache_key_2 == "model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
|
||||
assert (
|
||||
embedding_cache_key_2
|
||||
== "model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
|
||||
)
|
||||
print("passed!")
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
pytest.fail(f"Error occurred:", e)
|
||||
|
||||
|
||||
test_get_cache_key()
|
||||
|
||||
# test_custom_redis_cache_params()
|
||||
|
@ -581,4 +822,4 @@ test_get_cache_key()
|
|||
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
|
||||
# time.sleep(2)
|
||||
# assert cache.get_cache(cache_key="test_key") is None
|
||||
# # test_in_memory_cache_with_ttl()
|
||||
# # test_in_memory_cache_with_ttl()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue