forked from phoenix/litellm-mirror
fix(llm_guard.py): add streaming hook for moderation calls
This commit is contained in:
parent
0a5b8f0e4e
commit
49847347d0
4 changed files with 36 additions and 25 deletions
|
@ -101,19 +101,16 @@ class _ENTERPRISE_LLMGuard(CustomLogger):
|
|||
- Use the sanitized prompt returned
|
||||
- LLM Guard can handle things like PII Masking, etc.
|
||||
"""
|
||||
if "messages" in data:
|
||||
safety_check_messages = data["messages"][
|
||||
-1
|
||||
] # get the last response - llama guard has a 4k token limit
|
||||
if (
|
||||
isinstance(safety_check_messages, dict)
|
||||
and "content" in safety_check_messages
|
||||
and isinstance(safety_check_messages["content"], str)
|
||||
):
|
||||
await self.moderation_check(safety_check_messages["content"])
|
||||
|
||||
return data
|
||||
|
||||
async def async_post_call_streaming_hook(
|
||||
self, user_api_key_dict: UserAPIKeyAuth, response: str
|
||||
):
|
||||
if response is not None:
|
||||
await self.moderation_check(text=response)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
# llm_guard = _ENTERPRISE_LLMGuard()
|
||||
|
||||
|
|
|
@ -75,6 +75,13 @@ class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callbac
|
|||
async def async_moderation_hook(self, data: dict):
|
||||
pass
|
||||
|
||||
async def async_post_call_streaming_hook(
|
||||
self,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
response: str,
|
||||
):
|
||||
pass
|
||||
|
||||
#### SINGLE-USE #### - https://docs.litellm.ai/docs/observability/custom_callback#using-your-custom-callback-function
|
||||
|
||||
def log_input_event(self, model, messages, kwargs, print_verbose, callback_func):
|
||||
|
|
|
@ -401,6 +401,27 @@ class ProxyLogging:
|
|||
raise e
|
||||
return new_response
|
||||
|
||||
async def post_call_streaming_hook(
|
||||
self,
|
||||
response: str,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
):
|
||||
"""
|
||||
- Check outgoing streaming response uptil that point
|
||||
- Run through moderation check
|
||||
- Reject request if it fails moderation check
|
||||
"""
|
||||
new_response = copy.deepcopy(response)
|
||||
for callback in litellm.callbacks:
|
||||
try:
|
||||
if isinstance(callback, CustomLogger):
|
||||
await callback.async_post_call_streaming_hook(
|
||||
user_api_key_dict=user_api_key_dict, response=new_response
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
return new_response
|
||||
|
||||
|
||||
### DB CONNECTOR ###
|
||||
# Define the retry decorator with backoff strategy
|
||||
|
|
|
@ -909,20 +909,6 @@ class Logging:
|
|||
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
||||
)
|
||||
|
||||
if litellm.max_budget and self.stream:
|
||||
start_time = self.start_time
|
||||
end_time = (
|
||||
self.start_time
|
||||
) # no time has passed as the call hasn't been made yet
|
||||
time_diff = (end_time - start_time).total_seconds()
|
||||
float_diff = float(time_diff)
|
||||
litellm._current_cost += litellm.completion_cost(
|
||||
model=self.model,
|
||||
prompt="".join(message["content"] for message in self.messages),
|
||||
completion="",
|
||||
total_time=float_diff,
|
||||
)
|
||||
|
||||
# Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
|
||||
callbacks = litellm.input_callback + self.dynamic_input_callbacks
|
||||
for callback in callbacks:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue