(feat proxy prometheus) track virtual key, key alias, error code, error code class on prometheus (#5968)

* track api key and team in prom latency metric

* add test for latency metric

* test prometheus success metrics for latency

* track team and key labels for deployment failures

* add test for litellm_deployment_failure_responses_total

* fix checks for premium user on prometheus

* log_success_fallback_event and log_failure_fallback_event

* log original_exception in log_success_fallback_event

* track key, team and exception status and class on fallback metrics

* use get_standard_logging_metadata

* fix import error

* track litellm_deployment_successful_fallbacks

* add test test_proxy_fallback_metrics

* add log log_success_fallback_event

* fix test prometheus
This commit is contained in:
Ishaan Jaff 2024-09-28 19:00:21 -07:00 committed by GitHub
parent b817974c8e
commit 49ec40b1cb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 426 additions and 62 deletions

View file

@ -5,6 +5,7 @@ Unit tests for prometheus metrics
import pytest
import aiohttp
import asyncio
import uuid
async def make_bad_chat_completion_request(session, key):
@ -23,6 +24,53 @@ async def make_bad_chat_completion_request(session, key):
return status, response_text
async def make_good_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-openai-endpoint",
"messages": [{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
"tags": ["teamB"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_chat_completion_request_with_fallback(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["fake-openai-endpoint"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
# make a request with a failed fallback
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["unknown-model"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return
@pytest.mark.asyncio
async def test_proxy_failure_metrics():
"""
@ -59,3 +107,77 @@ async def test_proxy_failure_metrics():
'litellm_proxy_total_requests_metric_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None",user="default_user_id"} 1.0'
in metrics
)
assert (
'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_key_alias="None",api_provider="openai",exception_class="RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint",team="None",team_alias="None"}'
in metrics
)
@pytest.mark.asyncio
async def test_proxy_success_metrics():
"""
Make 1 good /chat/completions call to "openai/gpt-3.5-turbo"
GET /metrics
Assert the success metric is incremented by 1
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
status, response_text = await make_good_chat_completion_request(
session, "sk-1234"
)
# Check if the request succeeded as expected
assert status == 200, f"Expected status 200, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if the success metric is present and correct
assert (
'litellm_request_total_latency_metric_bucket{api_key_alias="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",team="None",team_alias="None"}'
in metrics
)
assert (
'litellm_llm_api_latency_metric_bucket{api_key_alias="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",team="None",team_alias="None"}'
in metrics
)
assert (
'litellm_deployment_latency_per_output_token_count{api_base="https://exampleopenaiendpoint-production.up.railway.app/",api_key_alias="None",api_provider="openai",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="fake",model_id="team-b-model",team="None",team_alias="None"}'
in metrics
)
@pytest.mark.asyncio
async def test_proxy_fallback_metrics():
"""
Make 1 request with a client side fallback - check metrics
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
await make_chat_completion_request_with_fallback(session, "sk-1234")
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if successful fallback metric is incremented
assert (
'litellm_deployment_successful_fallbacks_total{api_key_alias="None",exception_class="RateLimitError",exception_status="429",fallback_model="fake-openai-endpoint",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
# Check if failed fallback metric is incremented
assert (
'litellm_deployment_failed_fallbacks_total{api_key_alias="None",exception_class="RateLimitError",exception_status="429",fallback_model="unknown-model",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)