doc - using gpt-4o-audio-preview (#6326)

* doc on audio models

* doc supports vision

* doc audio input / output
This commit is contained in:
Ishaan Jaff 2024-10-19 09:34:56 +05:30 committed by GitHub
parent 89c71f1eb3
commit 4cbdad9fc5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 319 additions and 2 deletions

View file

@ -0,0 +1,316 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Using Audio Models
How to send / receieve audio to a `/chat/completions` endpoint
## Audio Output from a model
Example for creating a human-like audio response to a prompt
<Tabs>
<TabItem label="LiteLLM Python SDK" value="Python">
```python
import os
import base64
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
completion = await litellm.acompletion(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[{"role": "user", "content": "Is a golden retriever a good family dog?"}],
)
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
with open("dog.wav", "wb") as f:
f.write(wav_bytes)
```
</TabItem>
<TabItem label="LiteLLM Proxy Server" value="proxy">
1. Define an audio model on config.yaml
```yaml
model_list:
- model_name: gpt-4o-audio-preview # OpenAI gpt-4o-audio-preview
litellm_params:
model: openai/gpt-4o-audio-preview
api_key: os.environ/OPENAI_API_KEY
```
2. Run proxy server
```bash
litellm --config config.yaml
```
3. Test it using the OpenAI Python SDK
```python
import base64
from openai import OpenAI
client = OpenAI(
api_key="LITELLM_PROXY_KEY", # sk-1234
base_url="LITELLM_PROXY_BASE" # http://0.0.0.0:4000
)
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": "Is a golden retriever a good family dog?"
}
]
)
print(completion.choices[0])
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
with open("dog.wav", "wb") as f:
f.write(wav_bytes)
```
</TabItem>
</Tabs>
## Audio Input to a model
<Tabs>
<TabItem label="LiteLLM Python SDK" value="Python">
```python
import base64
import requests
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode("utf-8")
completion = litellm.completion(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "input_audio",
"input_audio": {"data": encoded_string, "format": "wav"},
},
],
},
],
)
print(completion.choices[0].message)
```
</TabItem>
<TabItem label="LiteLLM Proxy Server" value="proxy">
1. Define an audio model on config.yaml
```yaml
model_list:
- model_name: gpt-4o-audio-preview # OpenAI gpt-4o-audio-preview
litellm_params:
model: openai/gpt-4o-audio-preview
api_key: os.environ/OPENAI_API_KEY
```
2. Run proxy server
```bash
litellm --config config.yaml
```
3. Test it using the OpenAI Python SDK
```python
import base64
from openai import OpenAI
client = OpenAI(
api_key="LITELLM_PROXY_KEY", # sk-1234
base_url="LITELLM_PROXY_BASE" # http://0.0.0.0:4000
)
# Fetch the audio file and convert it to a base64 encoded string
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode('utf-8')
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this recording?"
},
{
"type": "input_audio",
"input_audio": {
"data": encoded_string,
"format": "wav"
}
}
]
},
]
)
print(completion.choices[0].message)
```
</TabItem>
</Tabs>
## Checking if a model supports `audio_input` and `audio_output`
<Tabs>
<TabItem label="LiteLLM Python SDK" value="Python">
Use `litellm.supports_audio_output(model="")` -> returns `True` if model can generate audio output
Use `litellm.supports_audio_input(model="")` -> returns `True` if model can accept audio input
```python
assert litellm.supports_audio_output(model="gpt-4o-audio-preview") == True
assert litellm.supports_audio_input(model="gpt-4o-audio-preview") == True
assert litellm.supports_audio_output(model="gpt-3.5-turbo") == False
assert litellm.supports_audio_input(model="gpt-3.5-turbo") == False
```
</TabItem>
<TabItem label="LiteLLM Proxy Server" value="proxy">
1. Define vision models on config.yaml
```yaml
model_list:
- model_name: gpt-4o-audio-preview # OpenAI gpt-4o-audio-preview
litellm_params:
model: openai/gpt-4o-audio-preview
api_key: os.environ/OPENAI_API_KEY
- model_name: llava-hf # Custom OpenAI compatible model
litellm_params:
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
api_base: http://localhost:8000
api_key: fake-key
model_info:
supports_audio_output: True # set supports_audio_output to True so /model/info returns this attribute as True
supports_audio_input: True # set supports_audio_input to True so /model/info returns this attribute as True
```
2. Run proxy server
```bash
litellm --config config.yaml
```
3. Call `/model_group/info` to check if your model supports `vision`
```shell
curl -X 'GET' \
'http://localhost:4000/model_group/info' \
-H 'accept: application/json' \
-H 'x-api-key: sk-1234'
```
Expected Response
```json
{
"data": [
{
"model_group": "gpt-4o-audio-preview",
"providers": ["openai"],
"max_input_tokens": 128000,
"max_output_tokens": 16384,
"mode": "chat",
"supports_audio_output": true, # 👈 supports_audio_output is true
"supports_audio_input": true, # 👈 supports_audio_input is true
},
{
"model_group": "llava-hf",
"providers": ["openai"],
"max_input_tokens": null,
"max_output_tokens": null,
"mode": null,
"supports_audio_output": true, # 👈 supports_audio_output is true
"supports_audio_input": true, # 👈 supports_audio_input is true
}
]
}
```
</TabItem>
</Tabs>
## Response Format with Audio
Below is an example JSON data structure for a `message` you might receive from a `/chat/completions` endpoint when sending audio input to a model.
```json
{
"index": 0,
"message": {
"role": "assistant",
"content": null,
"refusal": null,
"audio": {
"id": "audio_abc123",
"expires_at": 1729018505,
"data": "<bytes omitted>",
"transcript": "Yes, golden retrievers are known to be ..."
}
},
"finish_reason": "stop"
}
```
- `audio` If the audio output modality is requested, this object contains data about the audio response from the model
- `audio.id` Unique identifier for the audio response
- `audio.expires_at` The Unix timestamp (in seconds) for when this audio response will no longer be accessible on the server for use in multi-turn conversations.
- `audio.data` Base64 encoded audio bytes generated by the model, in the format specified in the request.
- `audio.transcript` Transcript of the audio generated by the model.

View file

@ -199,17 +199,18 @@ const sidebars = {
"completion/input",
"completion/provider_specific_params",
"completion/json_mode",
"completion/prompt_caching",
"completion/audio",
"completion/vision",
"completion/prefix",
"completion/drop_params",
"completion/prompt_formatting",
"completion/output",
"completion/prompt_caching",
"completion/usage",
"exception_mapping",
"completion/stream",
"completion/message_trimming",
"completion/function_call",
"completion/vision",
"completion/model_alias",
"completion/batching",
"completion/mock_requests",