adding support for vllm

This commit is contained in:
Krrish Dholakia 2023-09-06 18:07:42 -07:00
parent 9abefa18b8
commit 4cfcabd919
17 changed files with 163 additions and 35 deletions

BIN
dist/litellm-0.1.546-py3-none-any.whl vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.546.tar.gz vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.547-py3-none-any.whl vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.547.tar.gz vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.548-py3-none-any.whl vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.548.tar.gz vendored Normal file

Binary file not shown.

View file

@ -195,6 +195,7 @@ provider_list = [
"azure",
"sagemaker",
"bedrock",
"vllm",
"custom", # custom apis
]

View file

@ -54,8 +54,8 @@ def completion(
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["pre_message_sep"],
final_prompt_value=model_prompt_details["post_message_sep"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:

View file

@ -41,14 +41,13 @@ def completion(
logger_fn=None,
):
headers = validate_environment(api_key)
model = model
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["pre_message_sep"],
final_prompt_value=model_prompt_details["post_message_sep"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:

97
litellm/llms/vllm.py Normal file
View file

@ -0,0 +1,97 @@
import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
from .prompt_templates.factory import prompt_factory, custom_prompt
class VLLMError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
# check if vllm is installed
def validate_environment():
try:
from vllm import LLM, SamplingParams
return LLM, SamplingParams
except:
raise VLLMError(status_code=0, message="The vllm package is not installed in your environment. Run - `pip install vllm` before proceeding.")
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
LLM, SamplingParams = validate_environment()
try:
llm = LLM(model=model)
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:
prompt = prompt_factory(model=model, messages=messages)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": sampling_params},
)
outputs = llm.generate(prompt, sampling_params)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
return iter(outputs)
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": sampling_params},
)
print_verbose(f"raw model_response: {outputs}")
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(outputs[0].prompt_token_ids)
completion_tokens = len(outputs[0].outputs[0].token_ids)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -27,6 +27,7 @@ from .llms import huggingface_restapi
from .llms import replicate
from .llms import aleph_alpha
from .llms import baseten
from .llms import vllm
import tiktoken
from concurrent.futures import ThreadPoolExecutor
from typing import Callable, List, Optional, Dict
@ -671,19 +672,17 @@ def completion(
logging_obj=logging
)
# TODO: Add streaming for sagemaker
# if "stream" in optional_params and optional_params["stream"] == True:
# # don't try to access stream object,
# response = CustomStreamWrapper(
# model_response, model, custom_llm_provider="ai21", logging_obj=logging
# )
# return response
if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
# don't try to access stream object,
response = CustomStreamWrapper(
iter(model_response), model, custom_llm_provider="sagemaker", logging_obj=logging
)
return response
## RESPONSE OBJECT
response = model_response
elif custom_llm_provider == "bedrock":
# boto3 reads keys from .env
model_response = bedrock.completion(
elif custom_llm_provider == "vllm":
model_response = vllm.completion(
model=model,
messages=messages,
model_response=model_response,
@ -695,17 +694,15 @@ def completion(
logging_obj=logging
)
# TODO: Add streaming for bedrock
# if "stream" in optional_params and optional_params["stream"] == True:
# # don't try to access stream object,
# response = CustomStreamWrapper(
# model_response, model, custom_llm_provider="ai21", logging_obj=logging
# )
# return response
if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
# don't try to access stream object,
response = CustomStreamWrapper(
model_response, model, custom_llm_provider="vllm", logging_obj=logging
)
return response
## RESPONSE OBJECT
response = model_response
elif custom_llm_provider == "ollama":
endpoint = (
litellm.api_base if litellm.api_base is not None else api_base

View file

@ -435,7 +435,6 @@ def test_completion_together_ai():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_together_ai()
# def test_customprompt_together_ai():
# try:
# litellm.register_prompt_template(
@ -462,6 +461,20 @@ def test_completion_sagemaker():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
######## Test VLLM ########
# def test_completion_vllm():
# try:
# response = completion(
# model="vllm/facebook/opt-125m",
# messages=messages,
# temperature=0.2,
# max_tokens=80,
# )
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# test_completion_vllm()
# def test_completion_custom_api_base():
# try:

View file

@ -1385,23 +1385,33 @@ def modify_integration(integration_name, integration_params):
# custom prompt helper function
def register_prompt_template(model: str, roles: dict, pre_message_sep: str, post_message_sep: str):
def register_prompt_template(model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = ""):
"""
Example usage:
```
import litellm
litellm.register_prompt_template(
model="bloomz",
roles={"system":"<|im_start|>system", "assistant":"<|im_start|>assistant", "user":"<|im_start|>user"}
pre_message_sep: "\n",
post_message_sep: "<|im_end|>\n"
model="llama-2",
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n",
"post_message": "\n<</SYS>>\n [/INST]\n"
},
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348
"pre_message": "[INST] ",
"post_message": " [/INST]\n"
},
"assistant": {
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama
}
},
)
```
"""
litellm.custom_prompt_dict[model] = {
"roles": roles,
"pre_message_sep": pre_message_sep,
"post_message_sep": post_message_sep
"initial_prompt_value": initial_prompt_value,
"final_prompt_value": final_prompt_value
}
return litellm.custom_prompt_dict
@ -1844,6 +1854,14 @@ def exception_type(model, original_exception, custom_llm_provider):
llm_provider="together_ai",
model=model
)
elif custom_llm_provider == "vllm":
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 0:
raise APIConnectionError(
message=f"VLLMException - {original_exception.message}",
llm_provider="vllm",
model=model
)
else:
raise original_exception
except Exception as e:
@ -2080,6 +2098,9 @@ class CustomStreamWrapper:
elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_ai21_chunk(chunk)
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
chunk = next(self.completion_stream)
completion_obj["content"] = chunk[0].outputs[0].text
elif self.model in litellm.aleph_alpha_models: #ai21 doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_aleph_alpha_chunk(chunk)

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "0.1.545"
version = "0.1.548"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"