forked from phoenix/litellm-mirror
adding support for vllm
This commit is contained in:
parent
9abefa18b8
commit
4cfcabd919
17 changed files with 163 additions and 35 deletions
BIN
dist/litellm-0.1.546-py3-none-any.whl
vendored
Normal file
BIN
dist/litellm-0.1.546-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-0.1.546.tar.gz
vendored
Normal file
BIN
dist/litellm-0.1.546.tar.gz
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-0.1.547-py3-none-any.whl
vendored
Normal file
BIN
dist/litellm-0.1.547-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-0.1.547.tar.gz
vendored
Normal file
BIN
dist/litellm-0.1.547.tar.gz
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-0.1.548-py3-none-any.whl
vendored
Normal file
BIN
dist/litellm-0.1.548-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
dist/litellm-0.1.548.tar.gz
vendored
Normal file
BIN
dist/litellm-0.1.548.tar.gz
vendored
Normal file
Binary file not shown.
|
@ -195,6 +195,7 @@ provider_list = [
|
|||
"azure",
|
||||
"sagemaker",
|
||||
"bedrock",
|
||||
"vllm",
|
||||
"custom", # custom apis
|
||||
]
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -54,8 +54,8 @@ def completion(
|
|||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["pre_message_sep"],
|
||||
final_prompt_value=model_prompt_details["post_message_sep"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages
|
||||
)
|
||||
else:
|
||||
|
|
|
@ -41,14 +41,13 @@ def completion(
|
|||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
model = model
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["pre_message_sep"],
|
||||
final_prompt_value=model_prompt_details["post_message_sep"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages
|
||||
)
|
||||
else:
|
||||
|
|
97
litellm/llms/vllm.py
Normal file
97
litellm/llms/vllm.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
class VLLMError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
# check if vllm is installed
|
||||
def validate_environment():
|
||||
try:
|
||||
from vllm import LLM, SamplingParams
|
||||
return LLM, SamplingParams
|
||||
except:
|
||||
raise VLLMError(status_code=0, message="The vllm package is not installed in your environment. Run - `pip install vllm` before proceeding.")
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
LLM, SamplingParams = validate_environment()
|
||||
try:
|
||||
llm = LLM(model=model)
|
||||
except Exception as e:
|
||||
raise VLLMError(status_code=0, message=str(e))
|
||||
sampling_params = SamplingParams(**optional_params)
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": sampling_params},
|
||||
)
|
||||
|
||||
outputs = llm.generate(prompt, sampling_params)
|
||||
|
||||
|
||||
## COMPLETION CALL
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return iter(outputs)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=outputs,
|
||||
additional_args={"complete_input_dict": sampling_params},
|
||||
)
|
||||
print_verbose(f"raw model_response: {outputs}")
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(outputs[0].prompt_token_ids)
|
||||
completion_tokens = len(outputs[0].outputs[0].token_ids)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
|
@ -27,6 +27,7 @@ from .llms import huggingface_restapi
|
|||
from .llms import replicate
|
||||
from .llms import aleph_alpha
|
||||
from .llms import baseten
|
||||
from .llms import vllm
|
||||
import tiktoken
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Callable, List, Optional, Dict
|
||||
|
@ -671,19 +672,17 @@ def completion(
|
|||
logging_obj=logging
|
||||
)
|
||||
|
||||
# TODO: Add streaming for sagemaker
|
||||
# if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# # don't try to access stream object,
|
||||
# response = CustomStreamWrapper(
|
||||
# model_response, model, custom_llm_provider="ai21", logging_obj=logging
|
||||
# )
|
||||
# return response
|
||||
if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
iter(model_response), model, custom_llm_provider="sagemaker", logging_obj=logging
|
||||
)
|
||||
return response
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
elif custom_llm_provider == "bedrock":
|
||||
# boto3 reads keys from .env
|
||||
model_response = bedrock.completion(
|
||||
elif custom_llm_provider == "vllm":
|
||||
model_response = vllm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
|
@ -695,17 +694,15 @@ def completion(
|
|||
logging_obj=logging
|
||||
)
|
||||
|
||||
# TODO: Add streaming for bedrock
|
||||
# if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# # don't try to access stream object,
|
||||
# response = CustomStreamWrapper(
|
||||
# model_response, model, custom_llm_provider="ai21", logging_obj=logging
|
||||
# )
|
||||
# return response
|
||||
if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
model_response, model, custom_llm_provider="vllm", logging_obj=logging
|
||||
)
|
||||
return response
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
|
||||
elif custom_llm_provider == "ollama":
|
||||
endpoint = (
|
||||
litellm.api_base if litellm.api_base is not None else api_base
|
||||
|
|
|
@ -435,7 +435,6 @@ def test_completion_together_ai():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_together_ai()
|
||||
# def test_customprompt_together_ai():
|
||||
# try:
|
||||
# litellm.register_prompt_template(
|
||||
|
@ -462,6 +461,20 @@ def test_completion_sagemaker():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
######## Test VLLM ########
|
||||
# def test_completion_vllm():
|
||||
# try:
|
||||
# response = completion(
|
||||
# model="vllm/facebook/opt-125m",
|
||||
# messages=messages,
|
||||
# temperature=0.2,
|
||||
# max_tokens=80,
|
||||
# )
|
||||
# print(response)
|
||||
# except Exception as e:
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_vllm()
|
||||
|
||||
# def test_completion_custom_api_base():
|
||||
# try:
|
||||
|
|
|
@ -1385,23 +1385,33 @@ def modify_integration(integration_name, integration_params):
|
|||
|
||||
|
||||
# custom prompt helper function
|
||||
def register_prompt_template(model: str, roles: dict, pre_message_sep: str, post_message_sep: str):
|
||||
def register_prompt_template(model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = ""):
|
||||
"""
|
||||
Example usage:
|
||||
```
|
||||
import litellm
|
||||
litellm.register_prompt_template(
|
||||
model="bloomz",
|
||||
roles={"system":"<|im_start|>system", "assistant":"<|im_start|>assistant", "user":"<|im_start|>user"}
|
||||
pre_message_sep: "\n",
|
||||
post_message_sep: "<|im_end|>\n"
|
||||
model="llama-2",
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": "[INST] <<SYS>>\n",
|
||||
"post_message": "\n<</SYS>>\n [/INST]\n"
|
||||
},
|
||||
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348
|
||||
"pre_message": "[INST] ",
|
||||
"post_message": " [/INST]\n"
|
||||
},
|
||||
"assistant": {
|
||||
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama
|
||||
}
|
||||
},
|
||||
)
|
||||
```
|
||||
"""
|
||||
litellm.custom_prompt_dict[model] = {
|
||||
"roles": roles,
|
||||
"pre_message_sep": pre_message_sep,
|
||||
"post_message_sep": post_message_sep
|
||||
"initial_prompt_value": initial_prompt_value,
|
||||
"final_prompt_value": final_prompt_value
|
||||
}
|
||||
return litellm.custom_prompt_dict
|
||||
|
||||
|
@ -1844,6 +1854,14 @@ def exception_type(model, original_exception, custom_llm_provider):
|
|||
llm_provider="together_ai",
|
||||
model=model
|
||||
)
|
||||
elif custom_llm_provider == "vllm":
|
||||
if hasattr(original_exception, "status_code"):
|
||||
if original_exception.status_code == 0:
|
||||
raise APIConnectionError(
|
||||
message=f"VLLMException - {original_exception.message}",
|
||||
llm_provider="vllm",
|
||||
model=model
|
||||
)
|
||||
else:
|
||||
raise original_exception
|
||||
except Exception as e:
|
||||
|
@ -2080,6 +2098,9 @@ class CustomStreamWrapper:
|
|||
elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_ai21_chunk(chunk)
|
||||
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = chunk[0].outputs[0].text
|
||||
elif self.model in litellm.aleph_alpha_models: #ai21 doesn't provide streaming
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_aleph_alpha_chunk(chunk)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.545"
|
||||
version = "0.1.548"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue