forked from phoenix/litellm-mirror
Merge pull request #2474 from BerriAI/litellm_support_command_r
[New-Model] Cohere/command-r
This commit is contained in:
commit
5172fb1de9
9 changed files with 386 additions and 27 deletions
|
@ -17,7 +17,7 @@ os.environ["COHERE_API_KEY"] = "cohere key"
|
|||
|
||||
# cohere call
|
||||
response = completion(
|
||||
model="command-nightly",
|
||||
model="command-r",
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
)
|
||||
```
|
||||
|
@ -32,7 +32,7 @@ os.environ["COHERE_API_KEY"] = "cohere key"
|
|||
|
||||
# cohere call
|
||||
response = completion(
|
||||
model="command-nightly",
|
||||
model="command-r",
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
||||
stream=True
|
||||
)
|
||||
|
@ -41,7 +41,17 @@ for chunk in response:
|
|||
print(chunk)
|
||||
```
|
||||
|
||||
LiteLLM supports 'command', 'command-light', 'command-medium', 'command-medium-beta', 'command-xlarge-beta', 'command-nightly' models from [Cohere](https://cohere.com/).
|
||||
|
||||
## Supported Models
|
||||
| Model Name | Function Call |
|
||||
|------------|----------------|
|
||||
| command-r | `completion('command-r', messages)` |
|
||||
| command-light | `completion('command-light', messages)` |
|
||||
| command-medium | `completion('command-medium', messages)` |
|
||||
| command-medium-beta | `completion('command-medium-beta', messages)` |
|
||||
| command-xlarge-beta | `completion('command-xlarge-beta', messages)` |
|
||||
| command-nightly | `completion('command-nightly', messages)` |
|
||||
|
||||
|
||||
## Embedding
|
||||
|
||||
|
|
|
@ -131,6 +131,7 @@ const sidebars = {
|
|||
"providers/anthropic",
|
||||
"providers/aws_sagemaker",
|
||||
"providers/bedrock",
|
||||
"providers/cohere",
|
||||
"providers/anyscale",
|
||||
"providers/huggingface",
|
||||
"providers/ollama",
|
||||
|
@ -143,7 +144,6 @@ const sidebars = {
|
|||
"providers/ai21",
|
||||
"providers/nlp_cloud",
|
||||
"providers/replicate",
|
||||
"providers/cohere",
|
||||
"providers/togetherai",
|
||||
"providers/voyage",
|
||||
"providers/aleph_alpha",
|
||||
|
|
|
@ -252,6 +252,7 @@ config_path = None
|
|||
open_ai_chat_completion_models: List = []
|
||||
open_ai_text_completion_models: List = []
|
||||
cohere_models: List = []
|
||||
cohere_chat_models: List = []
|
||||
anthropic_models: List = []
|
||||
openrouter_models: List = []
|
||||
vertex_language_models: List = []
|
||||
|
@ -274,6 +275,8 @@ for key, value in model_cost.items():
|
|||
open_ai_text_completion_models.append(key)
|
||||
elif value.get("litellm_provider") == "cohere":
|
||||
cohere_models.append(key)
|
||||
elif value.get("litellm_provider") == "cohere_chat":
|
||||
cohere_chat_models.append(key)
|
||||
elif value.get("litellm_provider") == "anthropic":
|
||||
anthropic_models.append(key)
|
||||
elif value.get("litellm_provider") == "openrouter":
|
||||
|
@ -421,6 +424,7 @@ model_list = (
|
|||
open_ai_chat_completion_models
|
||||
+ open_ai_text_completion_models
|
||||
+ cohere_models
|
||||
+ cohere_chat_models
|
||||
+ anthropic_models
|
||||
+ replicate_models
|
||||
+ openrouter_models
|
||||
|
@ -444,6 +448,7 @@ provider_list: List = [
|
|||
"custom_openai",
|
||||
"text-completion-openai",
|
||||
"cohere",
|
||||
"cohere_chat",
|
||||
"anthropic",
|
||||
"replicate",
|
||||
"huggingface",
|
||||
|
@ -479,6 +484,7 @@ provider_list: List = [
|
|||
models_by_provider: dict = {
|
||||
"openai": open_ai_chat_completion_models + open_ai_text_completion_models,
|
||||
"cohere": cohere_models,
|
||||
"cohere_chat": cohere_chat_models,
|
||||
"anthropic": anthropic_models,
|
||||
"replicate": replicate_models,
|
||||
"huggingface": huggingface_models,
|
||||
|
|
204
litellm/llms/cohere_chat.py
Normal file
204
litellm/llms/cohere_chat.py
Normal file
|
@ -0,0 +1,204 @@
|
|||
import os, types
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time, traceback
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import litellm
|
||||
import httpx
|
||||
|
||||
|
||||
class CohereError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class CohereChatConfig:
|
||||
"""
|
||||
Configuration class for Cohere's API interface.
|
||||
|
||||
Args:
|
||||
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
|
||||
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
|
||||
generation_id (str, optional): Unique identifier for the generated reply.
|
||||
response_id (str, optional): Unique identifier for the response.
|
||||
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
|
||||
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
|
||||
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
|
||||
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
|
||||
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
|
||||
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
|
||||
max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
|
||||
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
|
||||
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
|
||||
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
|
||||
"""
|
||||
|
||||
preamble: Optional[str] = None
|
||||
chat_history: Optional[list] = None
|
||||
generation_id: Optional[str] = None
|
||||
response_id: Optional[str] = None
|
||||
conversation_id: Optional[str] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
connectors: Optional[list] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
documents: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_results: Optional[list] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
preamble: Optional[str] = None,
|
||||
chat_history: Optional[list] = None,
|
||||
generation_id: Optional[str] = None,
|
||||
response_id: Optional[str] = None,
|
||||
conversation_id: Optional[str] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
connectors: Optional[list] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
documents: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_results: Optional[list] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url = api_base
|
||||
model = model
|
||||
prompt = " ".join(message["content"] for message in messages)
|
||||
|
||||
## Load Config
|
||||
config = litellm.CohereConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"message": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": completion_url,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=optional_params["stream"] if "stream" in optional_params else False,
|
||||
)
|
||||
## error handling for cohere calls
|
||||
if response.status_code != 200:
|
||||
raise CohereError(message=response.text, status_code=response.status_code)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
try:
|
||||
model_response.choices[0].message.content = completion_response["text"] # type: ignore
|
||||
except Exception as e:
|
||||
raise CohereError(message=response.text, status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - use cohere `billed_units` for returning usage
|
||||
billed_units = completion_response.get("meta", {}).get("billed_units", {})
|
||||
|
||||
prompt_tokens = billed_units.get("input_tokens", 0)
|
||||
completion_tokens = billed_units.get("output_tokens", 0)
|
||||
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
|
@ -55,6 +55,7 @@ from .llms import (
|
|||
ollama_chat,
|
||||
cloudflare,
|
||||
cohere,
|
||||
cohere_chat,
|
||||
petals,
|
||||
oobabooga,
|
||||
openrouter,
|
||||
|
@ -1287,6 +1288,46 @@ def completion(
|
|||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "cohere_chat":
|
||||
cohere_key = (
|
||||
api_key
|
||||
or litellm.cohere_key
|
||||
or get_secret("COHERE_API_KEY")
|
||||
or get_secret("CO_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
|
||||
api_base = (
|
||||
api_base
|
||||
or litellm.api_base
|
||||
or get_secret("COHERE_API_BASE")
|
||||
or "https://api.cohere.ai/v1/chat"
|
||||
)
|
||||
|
||||
model_response = cohere_chat.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
api_key=cohere_key,
|
||||
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
model_response,
|
||||
model,
|
||||
custom_llm_provider="cohere_chat",
|
||||
logging_obj=logging,
|
||||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "maritalk":
|
||||
maritalk_key = (
|
||||
api_key
|
||||
|
|
|
@ -981,35 +981,45 @@
|
|||
"litellm_provider": "gemini",
|
||||
"mode": "chat"
|
||||
},
|
||||
"command-nightly": {
|
||||
|
||||
"cohere_chat/command-r": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 4096,
|
||||
"input_cost_per_token": 0.00000050,
|
||||
"output_cost_per_token": 0.0000015,
|
||||
"litellm_provider": "cohere_chat",
|
||||
"mode": "chat"
|
||||
},
|
||||
"cohere_chat/command-light": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere_chat",
|
||||
"mode": "chat"
|
||||
},
|
||||
"cohere/command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command": {
|
||||
"cohere/command": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-light": {
|
||||
"cohere/command-medium-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-medium-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-xlarge-beta": {
|
||||
"cohere/command-xlarge-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
|
|
|
@ -1984,6 +1984,50 @@ def test_completion_cohere():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# FYI - cohere_chat looks quite unstable, even when testing locally
|
||||
def test_chat_completion_cohere():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
messages = [
|
||||
{"role": "system", "content": "You're a good bot"},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hey",
|
||||
},
|
||||
]
|
||||
response = completion(
|
||||
model="cohere_chat/command-r",
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_chat_completion_cohere_stream():
|
||||
try:
|
||||
litellm.set_verbose = False
|
||||
messages = [
|
||||
{"role": "system", "content": "You're a good bot"},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hey",
|
||||
},
|
||||
]
|
||||
response = completion(
|
||||
model="cohere_chat/command-r",
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
stream=True,
|
||||
)
|
||||
print(response)
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_azure_cloudflare_api():
|
||||
litellm.set_verbose = True
|
||||
try:
|
||||
|
|
|
@ -7411,7 +7411,9 @@ def exception_type(
|
|||
model=model,
|
||||
response=original_exception.response,
|
||||
)
|
||||
elif custom_llm_provider == "cohere": # Cohere
|
||||
elif (
|
||||
custom_llm_provider == "cohere" or custom_llm_provider == "cohere_chat"
|
||||
): # Cohere
|
||||
if (
|
||||
"invalid api token" in error_str
|
||||
or "No API key provided." in error_str
|
||||
|
@ -8544,6 +8546,29 @@ class CustomStreamWrapper:
|
|||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_cohere_chat_chunk(self, chunk):
|
||||
chunk = chunk.decode("utf-8")
|
||||
data_json = json.loads(chunk)
|
||||
print_verbose(f"chunk: {chunk}")
|
||||
try:
|
||||
text = ""
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
if "text" in data_json:
|
||||
text = data_json["text"]
|
||||
elif "is_finished" in data_json and data_json["is_finished"] == True:
|
||||
is_finished = data_json["is_finished"]
|
||||
finish_reason = data_json["finish_reason"]
|
||||
else:
|
||||
return
|
||||
return {
|
||||
"text": text,
|
||||
"is_finished": is_finished,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_azure_chunk(self, chunk):
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
|
@ -9073,6 +9098,15 @@ class CustomStreamWrapper:
|
|||
model_response.choices[0].finish_reason = response_obj[
|
||||
"finish_reason"
|
||||
]
|
||||
elif self.custom_llm_provider == "cohere_chat":
|
||||
response_obj = self.handle_cohere_chat_chunk(chunk)
|
||||
if response_obj is None:
|
||||
return
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj[
|
||||
"finish_reason"
|
||||
]
|
||||
elif self.custom_llm_provider == "bedrock":
|
||||
if self.sent_last_chunk:
|
||||
raise StopIteration
|
||||
|
|
|
@ -981,35 +981,45 @@
|
|||
"litellm_provider": "gemini",
|
||||
"mode": "chat"
|
||||
},
|
||||
"command-nightly": {
|
||||
|
||||
"cohere_chat/command-r": {
|
||||
"max_tokens": 128000,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 4096,
|
||||
"input_cost_per_token": 0.00000050,
|
||||
"output_cost_per_token": 0.0000015,
|
||||
"litellm_provider": "cohere_chat",
|
||||
"mode": "chat"
|
||||
},
|
||||
"cohere_chat/command-light": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere_chat",
|
||||
"mode": "chat"
|
||||
},
|
||||
"cohere/command-nightly": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command": {
|
||||
"cohere/command": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-light": {
|
||||
"cohere/command-medium-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-medium-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "cohere",
|
||||
"mode": "completion"
|
||||
},
|
||||
"command-xlarge-beta": {
|
||||
"cohere/command-xlarge-beta": {
|
||||
"max_tokens": 4096,
|
||||
"input_cost_per_token": 0.000015,
|
||||
"output_cost_per_token": 0.000015,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue