forked from phoenix/litellm-mirror
Merge branch 'BerriAI:main' into main
This commit is contained in:
commit
53ccc45978
14 changed files with 186 additions and 137 deletions
58
README.md
58
README.md
|
@ -225,37 +225,37 @@ curl 'http://0.0.0.0:4000/key/generate' \
|
|||
## Supported Providers ([Docs](https://docs.litellm.ai/docs/providers))
|
||||
|
||||
| Provider | [Completion](https://docs.litellm.ai/docs/#basic-usage) | [Streaming](https://docs.litellm.ai/docs/completion/stream#streaming-responses) | [Async Completion](https://docs.litellm.ai/docs/completion/stream#async-completion) | [Async Streaming](https://docs.litellm.ai/docs/completion/stream#async-streaming) | [Async Embedding](https://docs.litellm.ai/docs/embedding/supported_embedding) | [Async Image Generation](https://docs.litellm.ai/docs/image_generation) |
|
||||
| ----------------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------- | --------------------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ----------------------------------------------------------------------- |
|
||||
|-------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|
||||
| [openai](https://docs.litellm.ai/docs/providers/openai) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [azure](https://docs.litellm.ai/docs/providers/azure) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [aws - sagemaker](https://docs.litellm.ai/docs/providers/aws_sagemaker) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [aws - bedrock](https://docs.litellm.ai/docs/providers/bedrock) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [google - vertex_ai](https://docs.litellm.ai/docs/providers/vertex) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅
|
||||
| [google - palm](https://docs.litellm.ai/docs/providers/palm) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [google AI Studio - gemini](https://docs.litellm.ai/docs/providers/gemini) | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [mistral ai api](https://docs.litellm.ai/docs/providers/mistral) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [cloudflare AI Workers](https://docs.litellm.ai/docs/providers/cloudflare_workers) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [cohere](https://docs.litellm.ai/docs/providers/cohere) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [anthropic](https://docs.litellm.ai/docs/providers/anthropic) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [huggingface](https://docs.litellm.ai/docs/providers/huggingface) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [replicate](https://docs.litellm.ai/docs/providers/replicate) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [together_ai](https://docs.litellm.ai/docs/providers/togetherai) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [openrouter](https://docs.litellm.ai/docs/providers/openrouter) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [ai21](https://docs.litellm.ai/docs/providers/ai21) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [baseten](https://docs.litellm.ai/docs/providers/baseten) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [vllm](https://docs.litellm.ai/docs/providers/vllm) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [nlp_cloud](https://docs.litellm.ai/docs/providers/nlp_cloud) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [aleph alpha](https://docs.litellm.ai/docs/providers/aleph_alpha) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [petals](https://docs.litellm.ai/docs/providers/petals) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [ollama](https://docs.litellm.ai/docs/providers/ollama) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [deepinfra](https://docs.litellm.ai/docs/providers/deepinfra) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [perplexity-ai](https://docs.litellm.ai/docs/providers/perplexity) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [Groq AI](https://docs.litellm.ai/docs/providers/groq) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [Deepseek](https://docs.litellm.ai/docs/providers/deepseek) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [anyscale](https://docs.litellm.ai/docs/providers/anyscale) | ✅ | ✅ | ✅ | ✅ |
|
||||
| [IBM - watsonx.ai](https://docs.litellm.ai/docs/providers/watsonx) | ✅ | ✅ | ✅ | ✅ | ✅
|
||||
| [voyage ai](https://docs.litellm.ai/docs/providers/voyage) | | | | | ✅ |
|
||||
| [xinference [Xorbits Inference]](https://docs.litellm.ai/docs/providers/xinference) | | | | | ✅ |
|
||||
| [aws - sagemaker](https://docs.litellm.ai/docs/providers/aws_sagemaker) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [aws - bedrock](https://docs.litellm.ai/docs/providers/bedrock) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [google - vertex_ai](https://docs.litellm.ai/docs/providers/vertex) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| [google - palm](https://docs.litellm.ai/docs/providers/palm) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [google AI Studio - gemini](https://docs.litellm.ai/docs/providers/gemini) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [mistral ai api](https://docs.litellm.ai/docs/providers/mistral) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [cloudflare AI Workers](https://docs.litellm.ai/docs/providers/cloudflare_workers) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [cohere](https://docs.litellm.ai/docs/providers/cohere) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [anthropic](https://docs.litellm.ai/docs/providers/anthropic) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [huggingface](https://docs.litellm.ai/docs/providers/huggingface) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [replicate](https://docs.litellm.ai/docs/providers/replicate) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [together_ai](https://docs.litellm.ai/docs/providers/togetherai) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [openrouter](https://docs.litellm.ai/docs/providers/openrouter) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [ai21](https://docs.litellm.ai/docs/providers/ai21) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [baseten](https://docs.litellm.ai/docs/providers/baseten) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [vllm](https://docs.litellm.ai/docs/providers/vllm) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [nlp_cloud](https://docs.litellm.ai/docs/providers/nlp_cloud) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [aleph alpha](https://docs.litellm.ai/docs/providers/aleph_alpha) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [petals](https://docs.litellm.ai/docs/providers/petals) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [ollama](https://docs.litellm.ai/docs/providers/ollama) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [deepinfra](https://docs.litellm.ai/docs/providers/deepinfra) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [perplexity-ai](https://docs.litellm.ai/docs/providers/perplexity) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [Groq AI](https://docs.litellm.ai/docs/providers/groq) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [Deepseek](https://docs.litellm.ai/docs/providers/deepseek) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [anyscale](https://docs.litellm.ai/docs/providers/anyscale) | ✅ | ✅ | ✅ | ✅ | | |
|
||||
| [IBM - watsonx.ai](https://docs.litellm.ai/docs/providers/watsonx) | ✅ | ✅ | ✅ | ✅ | ✅ | |
|
||||
| [voyage ai](https://docs.litellm.ai/docs/providers/voyage) | | | | | ✅ | |
|
||||
| [xinference [Xorbits Inference]](https://docs.litellm.ai/docs/providers/xinference) | | | | | ✅ | |
|
||||
|
||||
[**Read the Docs**](https://docs.litellm.ai/docs/)
|
||||
|
||||
|
|
|
@ -144,6 +144,26 @@ print(response)
|
|||
|
||||
```
|
||||
|
||||
You can also pass `metadata` as part of the request header with a `langfuse_*` prefix:
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--header 'langfuse_trace_id: trace-id22' \
|
||||
--header 'langfuse_trace_user_id: user-id2' \
|
||||
--header 'langfuse_trace_metadata: {"key":"value"}' \
|
||||
--data '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
### Trace & Generation Parameters
|
||||
|
||||
#### Trace Specific Parameters
|
||||
|
|
|
@ -47,7 +47,7 @@ for chunk in response:
|
|||
We support ALL Groq models, just set `groq/` as a prefix when sending completion requests
|
||||
|
||||
| Model Name | Function Call |
|
||||
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
|--------------------|---------------------------------------------------------|
|
||||
| llama3-8b-8192 | `completion(model="groq/llama3-8b-8192", messages)` |
|
||||
| llama3-70b-8192 | `completion(model="groq/llama3-70b-8192", messages)` |
|
||||
| llama2-70b-4096 | `completion(model="groq/llama2-70b-4096", messages)` |
|
||||
|
|
|
@ -27,12 +27,12 @@ Example TogetherAI Usage - Note: liteLLM supports all models deployed on Togethe
|
|||
|
||||
### Llama LLMs - Chat
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|-----------------------------------|-------------------------------------------------------------------------|------------------------------------|
|
||||
| togethercomputer/llama-2-70b-chat | `completion('together_ai/togethercomputer/llama-2-70b-chat', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
||||
### Llama LLMs - Language / Instruct
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|
|
||||
| togethercomputer/llama-2-70b | `completion('together_ai/togethercomputer/llama-2-70b', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| togethercomputer/LLaMA-2-7B-32K | `completion('together_ai/togethercomputer/LLaMA-2-7B-32K', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| togethercomputer/Llama-2-7B-32K-Instruct | `completion('together_ai/togethercomputer/Llama-2-7B-32K-Instruct', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
@ -40,23 +40,23 @@ Example TogetherAI Usage - Note: liteLLM supports all models deployed on Togethe
|
|||
|
||||
### Falcon LLMs
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|--------------------------------------|----------------------------------------------------------------------------|------------------------------------|
|
||||
| togethercomputer/falcon-40b-instruct | `completion('together_ai/togethercomputer/falcon-40b-instruct', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| togethercomputer/falcon-7b-instruct | `completion('together_ai/togethercomputer/falcon-7b-instruct', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
||||
### Alpaca LLMs
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|----------------------------|------------------------------------------------------------------|------------------------------------|
|
||||
| togethercomputer/alpaca-7b | `completion('together_ai/togethercomputer/alpaca-7b', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
||||
### Other Chat LLMs
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|------------------------------|--------------------------------------------------------------------|------------------------------------|
|
||||
| HuggingFaceH4/starchat-alpha | `completion('together_ai/HuggingFaceH4/starchat-alpha', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
||||
### Code LLMs
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------------|
|
||||
| togethercomputer/CodeLlama-34b | `completion('together_ai/togethercomputer/CodeLlama-34b', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| togethercomputer/CodeLlama-34b-Instruct | `completion('together_ai/togethercomputer/CodeLlama-34b-Instruct', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| togethercomputer/CodeLlama-34b-Python | `completion('together_ai/togethercomputer/CodeLlama-34b-Python', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
@ -67,7 +67,7 @@ Example TogetherAI Usage - Note: liteLLM supports all models deployed on Togethe
|
|||
|
||||
### Language LLMs
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|-----------------------------------|------------------------------------------------------------------------|---------------------------------|
|
||||
|-------------------------------------|---------------------------------------------------------------------------|------------------------------------|
|
||||
| NousResearch/Nous-Hermes-Llama2-13b | `completion('together_ai/NousResearch/Nous-Hermes-Llama2-13b', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| Austism/chronos-hermes-13b | `completion('together_ai/Austism/chronos-hermes-13b', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
| upstage/SOLAR-0-70b-16bit | `completion('together_ai/upstage/SOLAR-0-70b-16bit', messages)` | `os.environ['TOGETHERAI_API_KEY']` |
|
||||
|
|
|
@ -156,7 +156,7 @@ def default_pt(messages):
|
|||
#### Models we already have Prompt Templates for
|
||||
|
||||
| Model Name | Works for Models | Function Call |
|
||||
| -------- | -------- | -------- |
|
||||
|--------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|
|
||||
| meta-llama/Llama-2-7b-chat | All meta-llama llama2 chat models | `completion(model='vllm/meta-llama/Llama-2-7b', messages=messages, api_base="your_api_endpoint")` |
|
||||
| tiiuae/falcon-7b-instruct | All falcon instruct models | `completion(model='vllm/tiiuae/falcon-7b-instruct', messages=messages, api_base="your_api_endpoint")` |
|
||||
| mosaicml/mpt-7b-chat | All mpt chat models | `completion(model='vllm/mosaicml/mpt-7b-chat', messages=messages, api_base="your_api_endpoint")` |
|
||||
|
|
|
@ -252,7 +252,7 @@ response = completion(
|
|||
Here are some examples of models available in IBM watsonx.ai that you can use with LiteLLM:
|
||||
|
||||
| Mode Name | Command |
|
||||
| ---------- | --------- |
|
||||
|------------------------------------|------------------------------------------------------------------------------------------|
|
||||
| Flan T5 XXL | `completion(model=watsonx/google/flan-t5-xxl, messages=messages)` |
|
||||
| Flan Ul2 | `completion(model=watsonx/google/flan-ul2, messages=messages)` |
|
||||
| Mt0 XXL | `completion(model=watsonx/bigscience/mt0-xxl, messages=messages)` |
|
||||
|
@ -276,7 +276,7 @@ For a list of all available models in watsonx.ai, see [here](https://dataplatfor
|
|||
## Supported IBM watsonx.ai Embedding Models
|
||||
|
||||
| Model Name | Function Call |
|
||||
|----------------------|---------------------------------------------|
|
||||
|------------|------------------------------------------------------------------------|
|
||||
| Slate 30m | `embedding(model="watsonx/ibm/slate-30m-english-rtrvr", input=input)` |
|
||||
| Slate 125m | `embedding(model="watsonx/ibm/slate-125m-english-rtrvr", input=input)` |
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ print(response)
|
|||
All models listed here https://inference.readthedocs.io/en/latest/models/builtin/embedding/index.html are supported
|
||||
|
||||
| Model Name | Function Call |
|
||||
|------------------------------|--------------------------------------------------------|
|
||||
|-----------------------------|--------------------------------------------------------------------|
|
||||
| bge-base-en | `embedding(model="xinference/bge-base-en", input)` |
|
||||
| bge-base-en-v1.5 | `embedding(model="xinference/bge-base-en-v1.5", input)` |
|
||||
| bge-base-zh | `embedding(model="xinference/bge-base-zh", input)` |
|
||||
|
|
|
@ -260,7 +260,7 @@ Requirements:
|
|||
|
||||
<TabItem value="docker-deploy" label="Dockerfile">
|
||||
|
||||
We maintain a [seperate Dockerfile](https://github.com/BerriAI/litellm/pkgs/container/litellm-database) for reducing build time when running LiteLLM proxy with a connected Postgres Database
|
||||
We maintain a [separate Dockerfile](https://github.com/BerriAI/litellm/pkgs/container/litellm-database) for reducing build time when running LiteLLM proxy with a connected Postgres Database
|
||||
|
||||
```shell
|
||||
docker pull ghcr.io/berriai/litellm-database:main-latest
|
||||
|
|
|
@ -459,7 +459,7 @@ Step 1 Set a `LAKERA_API_KEY` in your env
|
|||
LAKERA_API_KEY="7a91a1a6059da*******"
|
||||
```
|
||||
|
||||
Step 2. Add `lakera_prompt_injection` to your calbacks
|
||||
Step 2. Add `lakera_prompt_injection` to your callbacks
|
||||
|
||||
```yaml
|
||||
litellm_settings:
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# Using Fine-Tuned gpt-3.5-turbo
|
||||
LiteLLM allows you to call `completion` with your fine-tuned gpt-3.5-turbo models
|
||||
If you're trying to create your custom finetuned gpt-3.5-turbo model following along on this tutorial: https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset
|
||||
If you're trying to create your custom fine-tuned gpt-3.5-turbo model following along on this tutorial: https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset
|
||||
|
||||
Once you've created your fine tuned model, you can call it with `litellm.completion()`
|
||||
Once you've created your fine-tuned model, you can call it with `litellm.completion()`
|
||||
|
||||
## Usage
|
||||
```python
|
||||
|
|
|
@ -69,6 +69,28 @@ class LangFuseLogger:
|
|||
else:
|
||||
self.upstream_langfuse = None
|
||||
|
||||
@staticmethod
|
||||
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
|
||||
"""
|
||||
Adds metadata from proxy request headers to Langfuse logging if keys start with "langfuse_"
|
||||
and overwrites litellm_params.metadata if already included.
|
||||
|
||||
For example if you want to append your trace to an existing `trace_id` via header, send
|
||||
`headers: { ..., langfuse_existing_trace_id: your-existing-trace-id }` via proxy request.
|
||||
"""
|
||||
proxy_headers = litellm_params.get("proxy_server_request", {}).get("headers", {})
|
||||
|
||||
for metadata_param_key in proxy_headers:
|
||||
if metadata_param_key.startswith("langfuse_"):
|
||||
trace_param_key = metadata_param_key.replace("langfuse_", "", 1)
|
||||
if trace_param_key in metadata:
|
||||
verbose_logger.warning(f"Overwriting Langfuse `{trace_param_key}` from request header")
|
||||
else:
|
||||
verbose_logger.debug(f"Found Langfuse `{trace_param_key}` in request header")
|
||||
metadata[trace_param_key] = proxy_headers.get(metadata_param_key)
|
||||
|
||||
return metadata
|
||||
|
||||
# def log_error(kwargs, response_obj, start_time, end_time):
|
||||
# generation = trace.generation(
|
||||
# level ="ERROR" # can be any of DEBUG, DEFAULT, WARNING or ERROR
|
||||
|
@ -97,6 +119,7 @@ class LangFuseLogger:
|
|||
metadata = (
|
||||
litellm_params.get("metadata", {}) or {}
|
||||
) # if litellm_params['metadata'] == None
|
||||
metadata = self.add_metadata_from_header(litellm_params, metadata)
|
||||
optional_params = copy.deepcopy(kwargs.get("optional_params", {}))
|
||||
|
||||
prompt = {"messages": kwargs.get("messages")}
|
||||
|
|
|
@ -833,7 +833,7 @@ def anthropic_messages_pt_xml(messages: list):
|
|||
) # either string or none
|
||||
if messages[msg_i].get(
|
||||
"tool_calls", []
|
||||
): # support assistant tool invoke convertion
|
||||
): # support assistant tool invoke conversion
|
||||
assistant_text += convert_to_anthropic_tool_invoke_xml( # type: ignore
|
||||
messages[msg_i]["tool_calls"]
|
||||
)
|
||||
|
@ -1224,7 +1224,7 @@ def anthropic_messages_pt(messages: list):
|
|||
|
||||
if messages[msg_i].get(
|
||||
"tool_calls", []
|
||||
): # support assistant tool invoke convertion
|
||||
): # support assistant tool invoke conversion
|
||||
assistant_content.extend(
|
||||
convert_to_anthropic_tool_invoke(messages[msg_i]["tool_calls"])
|
||||
)
|
||||
|
|
|
@ -297,24 +297,29 @@ def _convert_gemini_role(role: str) -> Literal["user", "model"]:
|
|||
|
||||
def _process_gemini_image(image_url: str) -> PartType:
|
||||
try:
|
||||
if "gs://" in image_url:
|
||||
# Case 1: Images with Cloud Storage URIs
|
||||
if ".mp4" in image_url and "gs://" in image_url:
|
||||
# Case 1: Videos with Cloud Storage URIs
|
||||
part_mime = "video/mp4"
|
||||
_file_data = FileDataType(mime_type=part_mime, file_uri=image_url)
|
||||
return PartType(file_data=_file_data)
|
||||
elif ".pdf" in image_url and "gs://" in image_url:
|
||||
# Case 2: PDF's with Cloud Storage URIs
|
||||
part_mime = "application/pdf"
|
||||
_file_data = FileDataType(mime_type=part_mime, file_uri=image_url)
|
||||
return PartType(file_data=_file_data)
|
||||
elif "gs://" in image_url:
|
||||
# Case 3: Images with Cloud Storage URIs
|
||||
# The supported MIME types for images include image/png and image/jpeg.
|
||||
part_mime = "image/png" if "png" in image_url else "image/jpeg"
|
||||
_file_data = FileDataType(mime_type=part_mime, file_uri=image_url)
|
||||
return PartType(file_data=_file_data)
|
||||
elif "https:/" in image_url:
|
||||
# Case 2: Images with direct links
|
||||
# Case 4: Images with direct links
|
||||
image = _load_image_from_url(image_url)
|
||||
_blob = BlobType(data=image.data, mime_type=image._mime_type)
|
||||
return PartType(inline_data=_blob)
|
||||
elif ".mp4" in image_url and "gs://" in image_url:
|
||||
# Case 3: Videos with Cloud Storage URIs
|
||||
part_mime = "video/mp4"
|
||||
_file_data = FileDataType(mime_type=part_mime, file_uri=image_url)
|
||||
return PartType(file_data=_file_data)
|
||||
elif "base64" in image_url:
|
||||
# Case 4: Images with base64 encoding
|
||||
# Case 5: Images with base64 encoding
|
||||
import base64, re
|
||||
|
||||
# base 64 is passed as data:image/jpeg;base64,<base-64-encoded-image>
|
||||
|
@ -390,7 +395,7 @@ def _gemini_convert_messages_with_history(messages: list) -> List[ContentType]:
|
|||
assistant_content.extend(_parts)
|
||||
elif messages[msg_i].get(
|
||||
"tool_calls", []
|
||||
): # support assistant tool invoke convertion
|
||||
): # support assistant tool invoke conversion
|
||||
assistant_content.extend(
|
||||
convert_to_gemini_tool_call_invoke(messages[msg_i]["tool_calls"])
|
||||
)
|
||||
|
|
|
@ -63,7 +63,8 @@ extra_proxy = [
|
|||
"azure-identity",
|
||||
"azure-keyvault-secrets",
|
||||
"google-cloud-kms",
|
||||
"resend"
|
||||
"resend",
|
||||
"pynacl"
|
||||
]
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue