docs(billing.md): improve proxy billing tutorial

This commit is contained in:
Krrish Dholakia 2024-05-16 15:27:23 -07:00
parent 2179598d1d
commit 53ddc9fdbe

View file

@ -2,19 +2,40 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 💰 Billing
# 💵 Billing
Bill users for their usage.
Requirements:
- Setup a billing plan on Lago, for usage-based billing. We recommend following their Stripe tutorial - https://docs.getlago.com/templates/per-transaction/stripe#step-1-create-billable-metrics-for-transaction
**🚨 Requirements**
- [Setup Lago](https://docs.getlago.com/guide/self-hosted/docker#run-the-app), for usage-based billing. We recommend following [their Stripe tutorial](https://docs.getlago.com/templates/per-transaction/stripe#step-1-create-billable-metrics-for-transaction)
Steps:
- Connect the proxy to Lago
- Set the id you want to bill for (customers, internal users, teams)
- Start!
## 1. Connect proxy to Lago
## Quick Start
Bill internal users for their usage
### 1. Connect proxy to Lago
Set 'lago' as a callback on your proxy config.yaml
```yaml
model_name:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["lago"] # 👈 KEY CHANGE
general_settings:
master_key: sk-1234
```
Add your Lago keys to the environment
@ -22,56 +43,60 @@ Add your Lago keys to the environment
export LAGO_API_BASE="http://localhost:3000" # self-host - https://docs.getlago.com/guide/self-hosted/docker#run-the-app
export LAGO_API_KEY="3e29d607-de54-49aa-a019-ecf585729070" # Get key - https://docs.getlago.com/guide/self-hosted/docker#find-your-api-key
export LAGO_API_EVENT_CODE="openai_tokens" # name of lago billing code
export LAGO_API_CHARGE_BY="user_id" # 👈 Charges 'user_id' attached to proxy key
```
Set 'lago' as a callback on your proxy config.yaml
Start proxy
```yaml
...
litellm_settings:
callbacks: ["lago"]
```bash
litellm --config /path/to/config.yaml
```
## 2. Set the id you want to bill for
### 2. Create Key for Internal User
For:
- Customers (id passed via 'user' param in /chat/completion call) = 'end_user_id'
- Internal Users (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'user_id'
- Teams (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'team_id'
```yaml
export LAGO_API_CHARGE_BY="end_user_id" # 👈 Charge 'Customers'. Default is 'end_user_id'.
```bash
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"user_id": "my-unique-id"}' # 👈 Internal User's ID
```
## 3. Start billing!
Response Object:
```bash
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}
```
### 3. Start billing!
<Tabs>
<TabItem value="customers" label="Customer Billing">
<TabItem value="curl" label="Curl">
### **Curl**
```shell
```bash
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-tXL0wt5-lOOVK9sfY2UacA' \ # 👈 User's Key
--data ' {
"model": "gpt-3.5-turbo",
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"user": "my_customer_id" # 👈 whatever your customer id is
}
'
```
### **OpenAI Python SDK**
</TabItem>
<TabItem value="openai_python" label="OpenAI Python SDK">
```python
import openai
client = openai.OpenAI(
api_key="anything",
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 User's Key
base_url="http://0.0.0.0:4000"
)
@ -81,12 +106,12 @@ response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
"role": "user",
"content": "this is a test request, write a short poem"
}
], user="my_customer_id") # 👈 whatever your customer id is
])
print(response)
```
### **Langchain**
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
@ -98,15 +123,12 @@ from langchain.prompts.chat import (
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "anything"
os.environ["OPENAI_API_KEY"] = "sk-tXL0wt5-lOOVK9sfY2UacA" # 👈 User's Key
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"user": "my_customer_id" # 👈 whatever your customer id is
}
)
messages = [
@ -119,85 +141,6 @@ messages = [
]
response = chat(messages)
print(response)
```
</TabItem>
<TabItem value="internal_user" label="Internal User (Key Owner) Billing">
1. Create a key for that user
```bash
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"user_id": "my-unique-id"}'
```
Response Object:
```bash
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}
```
2. Make API Calls with that Key
```python
import openai
client = openai.OpenAI(
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Generated key
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
<TabItem value="teams" label="Team Billing">
1. Create a key for that team
```bash
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "my-unique-id"}'
```
Response Object:
```bash
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}
```
2. Make API Calls with that Key
```python
import openai
client = openai.OpenAI(
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Generated key
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
@ -227,3 +170,150 @@ This is what LiteLLM will log to Lagos
}
}
```
## Advanced - Bill Customers, Internal Teams
For:
- Customers (id passed via 'user' param in /chat/completion call) = 'end_user_id'
- Internal Users (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'user_id'
- Teams (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'team_id'
<Tabs>
<TabItem value="customers" label="Customer Billing">
1. Set 'LAGO_API_CHARGE_BY' to 'end_user_id'
```bash
export LAGO_API_CHARGE_BY="end_user_id"
```
2. Test it!
<Tabs>
<TabItem value="curl" label="Curl">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"user": "my_customer_id" # 👈 whatever your customer id is
}
'
```
</TabItem>
<TabItem value="openai_sdk" label="OpenAI Python SDK">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
], user="my_customer_id") # 👈 whatever your customer id is
print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "anything"
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"user": "my_customer_id" # 👈 whatever your customer id is
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="teams" label="Team Billing">
1. Set 'LAGO_API_CHARGE_BY' to 'team_id'
```bash
export LAGO_API_CHARGE_BY="team_id"
```
2. Create a key for that team
```bash
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "my-unique-id"}'
```
Response Object:
```bash
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}
```
3. Make API Calls with that Key
```python
import openai
client = openai.OpenAI(
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Generated key
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
</Tabs>