forked from phoenix/litellm-mirror
(feat) add XAI ChatCompletion Support (#6373)
* init commit for XAI * add full logic for xai chat completion * test_completion_xai * docs xAI * add xai/grok-beta * test_xai_chat_config_get_openai_compatible_provider_info * test_xai_chat_config_map_openai_params * add xai streaming test
This commit is contained in:
parent
9545b0e5cd
commit
5652c375b3
9 changed files with 400 additions and 0 deletions
146
docs/my-website/docs/providers/xai.md
Normal file
146
docs/my-website/docs/providers/xai.md
Normal file
|
@ -0,0 +1,146 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# XAI
|
||||
|
||||
https://docs.x.ai/docs
|
||||
|
||||
:::tip
|
||||
|
||||
**We support ALL XAI models, just set `model=xai/<any-model-on-xai>` as a prefix when sending litellm requests**
|
||||
|
||||
:::
|
||||
|
||||
## API Key
|
||||
```python
|
||||
# env variable
|
||||
os.environ['XAI_API_KEY']
|
||||
```
|
||||
|
||||
## Sample Usage
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['XAI_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="xai/grok-beta",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in Boston today in Fahrenheit?",
|
||||
}
|
||||
],
|
||||
max_tokens=10,
|
||||
response_format={ "type": "json_object" },
|
||||
seed=123,
|
||||
stop=["\n\n"],
|
||||
temperature=0.2,
|
||||
top_p=0.9,
|
||||
tool_choice="auto",
|
||||
tools=[],
|
||||
user="user",
|
||||
)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## Sample Usage - Streaming
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['XAI_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="xai/grok-beta",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in Boston today in Fahrenheit?",
|
||||
}
|
||||
],
|
||||
stream=True,
|
||||
max_tokens=10,
|
||||
response_format={ "type": "json_object" },
|
||||
seed=123,
|
||||
stop=["\n\n"],
|
||||
temperature=0.2,
|
||||
top_p=0.9,
|
||||
tool_choice="auto",
|
||||
tools=[],
|
||||
user="user",
|
||||
)
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
|
||||
## Usage with LiteLLM Proxy Server
|
||||
|
||||
Here's how to call a XAI model with the LiteLLM Proxy Server
|
||||
|
||||
1. Modify the config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: my-model
|
||||
litellm_params:
|
||||
model: xai/<your-model-name> # add xai/ prefix to route as XAI provider
|
||||
api_key: api-key # api key to send your model
|
||||
```
|
||||
|
||||
|
||||
2. Start the proxy
|
||||
|
||||
```bash
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Send Request to LiteLLM Proxy Server
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="openai" label="OpenAI Python v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
|
||||
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="my-model",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "my-model",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
|
@ -155,6 +155,7 @@ const sidebars = {
|
|||
"providers/watsonx",
|
||||
"providers/predibase",
|
||||
"providers/nvidia_nim",
|
||||
"providers/xai",
|
||||
"providers/cerebras",
|
||||
"providers/volcano",
|
||||
"providers/triton-inference-server",
|
||||
|
|
|
@ -490,6 +490,7 @@ openai_compatible_endpoints: List = [
|
|||
"app.empower.dev/api/v1",
|
||||
"inference.friendli.ai/v1",
|
||||
"api.sambanova.ai/v1",
|
||||
"api.x.ai/v1",
|
||||
]
|
||||
|
||||
# this is maintained for Exception Mapping
|
||||
|
@ -507,6 +508,7 @@ openai_compatible_providers: List = [
|
|||
"deepinfra",
|
||||
"perplexity",
|
||||
"xinference",
|
||||
"xai",
|
||||
"together_ai",
|
||||
"fireworks_ai",
|
||||
"empower",
|
||||
|
@ -717,6 +719,7 @@ class LlmProviders(str, Enum):
|
|||
OPENAI = "openai"
|
||||
OPENAI_LIKE = "openai_like" # embedding only
|
||||
JINA_AI = "jina_ai"
|
||||
XAI = "xai"
|
||||
CUSTOM_OPENAI = "custom_openai"
|
||||
TEXT_COMPLETION_OPENAI = "text-completion-openai"
|
||||
COHERE = "cohere"
|
||||
|
@ -1021,6 +1024,7 @@ from .llms.fireworks_ai.embed.fireworks_ai_transformation import (
|
|||
FireworksAIEmbeddingConfig,
|
||||
)
|
||||
from .llms.jina_ai.embedding.transformation import JinaAIEmbeddingConfig
|
||||
from .llms.xai.chat.xai_transformation import XAIChatConfig
|
||||
from .llms.volcengine import VolcEngineConfig
|
||||
from .llms.text_completion_codestral import MistralTextCompletionConfig
|
||||
from .llms.AzureOpenAI.azure import (
|
||||
|
|
|
@ -480,6 +480,13 @@ def _get_openai_compatible_provider_info( # noqa: PLR0915
|
|||
) = litellm.JinaAIEmbeddingConfig()._get_openai_compatible_provider_info(
|
||||
api_base, api_key
|
||||
)
|
||||
elif custom_llm_provider == "xai":
|
||||
(
|
||||
api_base,
|
||||
dynamic_api_key,
|
||||
) = litellm.XAIChatConfig()._get_openai_compatible_provider_info(
|
||||
api_base, api_key
|
||||
)
|
||||
elif custom_llm_provider == "voyage":
|
||||
# voyage is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.voyageai.com/v1
|
||||
api_base = (
|
||||
|
|
56
litellm/llms/xai/chat/xai_transformation.py
Normal file
56
litellm/llms/xai/chat/xai_transformation.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
import types
|
||||
from typing import Literal, Optional, Tuple, Union
|
||||
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
XAI_API_BASE = "https://api.x.ai/v1"
|
||||
|
||||
|
||||
class XAIChatConfig(OpenAIGPTConfig):
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("XAI_API_BASE") or XAI_API_BASE # type: ignore
|
||||
dynamic_api_key = api_key or get_secret_str("XAI_API_KEY")
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
return [
|
||||
"frequency_penalty",
|
||||
"logit_bias",
|
||||
"logprobs",
|
||||
"max_tokens",
|
||||
"messages",
|
||||
"model",
|
||||
"n",
|
||||
"presence_penalty",
|
||||
"response_format",
|
||||
"seed",
|
||||
"stop",
|
||||
"stream",
|
||||
"stream_options",
|
||||
"temperature",
|
||||
"tool_choice",
|
||||
"tools",
|
||||
"top_logprobs",
|
||||
"top_p",
|
||||
"user",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool = False,
|
||||
) -> dict:
|
||||
supported_openai_params = self.get_supported_openai_params(model=model)
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_completion_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
elif param in supported_openai_params:
|
||||
if value is not None:
|
||||
optional_params[param] = value
|
||||
return optional_params
|
|
@ -1502,6 +1502,17 @@
|
|||
"mode": "completion",
|
||||
"source": "https://docs.mistral.ai/capabilities/code_generation/"
|
||||
},
|
||||
"xai/grok-beta": {
|
||||
"max_tokens": 131072,
|
||||
"max_input_tokens": 131072,
|
||||
"max_output_tokens": 131072,
|
||||
"input_cost_per_token": 0.000005,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "xai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"deepseek-coder": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 128000,
|
||||
|
|
|
@ -2680,6 +2680,7 @@ def get_optional_params( # noqa: PLR0915
|
|||
and custom_llm_provider != "groq"
|
||||
and custom_llm_provider != "nvidia_nim"
|
||||
and custom_llm_provider != "cerebras"
|
||||
and custom_llm_provider != "xai"
|
||||
and custom_llm_provider != "ai21_chat"
|
||||
and custom_llm_provider != "volcengine"
|
||||
and custom_llm_provider != "deepseek"
|
||||
|
@ -3456,6 +3457,16 @@ def get_optional_params( # noqa: PLR0915
|
|||
optional_params=optional_params,
|
||||
model=model,
|
||||
)
|
||||
elif custom_llm_provider == "xai":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = litellm.XAIChatConfig().map_openai_params(
|
||||
model=model,
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "ai21_chat":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -4184,6 +4195,8 @@ def get_supported_openai_params( # noqa: PLR0915
|
|||
return litellm.nvidiaNimEmbeddingConfig.get_supported_openai_params()
|
||||
elif custom_llm_provider == "cerebras":
|
||||
return litellm.CerebrasConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "xai":
|
||||
return litellm.XAIChatConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "ai21_chat":
|
||||
return litellm.AI21ChatConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "volcengine":
|
||||
|
@ -5344,6 +5357,11 @@ def validate_environment( # noqa: PLR0915
|
|||
keys_in_environment = True
|
||||
else:
|
||||
missing_keys.append("CEREBRAS_API_KEY")
|
||||
elif custom_llm_provider == "xai":
|
||||
if "XAI_API_KEY" in os.environ:
|
||||
keys_in_environment = True
|
||||
else:
|
||||
missing_keys.append("XAI_API_KEY")
|
||||
elif custom_llm_provider == "ai21_chat":
|
||||
if "AI21_API_KEY" in os.environ:
|
||||
keys_in_environment = True
|
||||
|
|
|
@ -1502,6 +1502,17 @@
|
|||
"mode": "completion",
|
||||
"source": "https://docs.mistral.ai/capabilities/code_generation/"
|
||||
},
|
||||
"xai/grok-beta": {
|
||||
"max_tokens": 131072,
|
||||
"max_input_tokens": 131072,
|
||||
"max_output_tokens": 131072,
|
||||
"input_cost_per_token": 0.000005,
|
||||
"output_cost_per_token": 0.000015,
|
||||
"litellm_provider": "xai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"deepseek-coder": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 128000,
|
||||
|
|
146
tests/llm_translation/test_xai.py
Normal file
146
tests/llm_translation/test_xai.py
Normal file
|
@ -0,0 +1,146 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
from respx import MockRouter
|
||||
|
||||
import litellm
|
||||
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
|
||||
from litellm import completion
|
||||
from unittest.mock import patch
|
||||
from litellm.llms.xai.chat.xai_transformation import XAIChatConfig, XAI_API_BASE
|
||||
|
||||
|
||||
def test_xai_chat_config_get_openai_compatible_provider_info():
|
||||
config = XAIChatConfig()
|
||||
|
||||
# Test with default values
|
||||
api_base, api_key = config._get_openai_compatible_provider_info(
|
||||
api_base=None, api_key=None
|
||||
)
|
||||
assert api_base == XAI_API_BASE
|
||||
assert api_key == os.environ.get("XAI_API_KEY")
|
||||
|
||||
# Test with custom API key
|
||||
custom_api_key = "test_api_key"
|
||||
api_base, api_key = config._get_openai_compatible_provider_info(
|
||||
api_base=None, api_key=custom_api_key
|
||||
)
|
||||
assert api_base == XAI_API_BASE
|
||||
assert api_key == custom_api_key
|
||||
|
||||
# Test with custom environment variables for api_base and api_key
|
||||
with patch.dict(
|
||||
"os.environ",
|
||||
{"XAI_API_BASE": "https://env.x.ai/v1", "XAI_API_KEY": "env_api_key"},
|
||||
):
|
||||
api_base, api_key = config._get_openai_compatible_provider_info(None, None)
|
||||
assert api_base == "https://env.x.ai/v1"
|
||||
assert api_key == "env_api_key"
|
||||
|
||||
|
||||
def test_xai_chat_config_map_openai_params():
|
||||
"""
|
||||
XAI is OpenAI compatible*
|
||||
|
||||
Does not support all OpenAI parameters:
|
||||
- max_completion_tokens -> max_tokens
|
||||
|
||||
"""
|
||||
config = XAIChatConfig()
|
||||
|
||||
# Test mapping of parameters
|
||||
non_default_params = {
|
||||
"max_completion_tokens": 100,
|
||||
"frequency_penalty": 0.5,
|
||||
"logit_bias": {"50256": -100},
|
||||
"logprobs": 5,
|
||||
"messages": [{"role": "user", "content": "Hello"}],
|
||||
"model": "xai/grok-beta",
|
||||
"n": 2,
|
||||
"presence_penalty": 0.2,
|
||||
"response_format": {"type": "json_object"},
|
||||
"seed": 42,
|
||||
"stop": ["END"],
|
||||
"stream": True,
|
||||
"stream_options": {},
|
||||
"temperature": 0.7,
|
||||
"tool_choice": "auto",
|
||||
"tools": [{"type": "function", "function": {"name": "get_weather"}}],
|
||||
"top_logprobs": 3,
|
||||
"top_p": 0.9,
|
||||
"user": "test_user",
|
||||
"unsupported_param": "value",
|
||||
}
|
||||
optional_params = {}
|
||||
model = "xai/grok-beta"
|
||||
|
||||
result = config.map_openai_params(non_default_params, optional_params, model)
|
||||
|
||||
# Assert all supported parameters are present in the result
|
||||
assert result["max_tokens"] == 100 # max_completion_tokens -> max_tokens
|
||||
assert result["frequency_penalty"] == 0.5
|
||||
assert result["logit_bias"] == {"50256": -100}
|
||||
assert result["logprobs"] == 5
|
||||
assert result["messages"] == [{"role": "user", "content": "Hello"}]
|
||||
assert result["model"] == "xai/grok-beta"
|
||||
assert result["n"] == 2
|
||||
assert result["presence_penalty"] == 0.2
|
||||
assert result["response_format"] == {"type": "json_object"}
|
||||
assert result["seed"] == 42
|
||||
assert result["stop"] == ["END"]
|
||||
assert result["stream"] is True
|
||||
assert result["stream_options"] == {}
|
||||
assert result["temperature"] == 0.7
|
||||
assert result["tool_choice"] == "auto"
|
||||
assert result["tools"] == [
|
||||
{"type": "function", "function": {"name": "get_weather"}}
|
||||
]
|
||||
assert result["top_logprobs"] == 3
|
||||
assert result["top_p"] == 0.9
|
||||
assert result["user"] == "test_user"
|
||||
|
||||
# Assert unsupported parameter is not in the result
|
||||
assert "unsupported_param" not in result
|
||||
|
||||
|
||||
@pytest.mark.parametrize("stream", [False, True])
|
||||
def test_completion_xai(stream):
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
messages = [
|
||||
{"role": "system", "content": "You're a good bot"},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hey",
|
||||
},
|
||||
]
|
||||
response = completion(
|
||||
model="xai/grok-beta",
|
||||
messages=messages,
|
||||
stream=stream,
|
||||
)
|
||||
print(response)
|
||||
|
||||
if stream is True:
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
assert chunk is not None
|
||||
assert isinstance(chunk, litellm.ModelResponse)
|
||||
assert isinstance(chunk.choices[0], litellm.utils.StreamingChoices)
|
||||
|
||||
else:
|
||||
assert response is not None
|
||||
assert isinstance(response, litellm.ModelResponse)
|
||||
assert response.choices[0].message.content is not None
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
Loading…
Add table
Add a link
Reference in a new issue