forked from phoenix/litellm-mirror
fix(utils.py): new helper function to check if provider/model supports 'response_schema' param
This commit is contained in:
parent
be8a6377f6
commit
5718d1e205
5 changed files with 114 additions and 93 deletions
|
@ -1486,6 +1486,7 @@
|
|||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini-1.5-pro-001": {
|
||||
|
@ -1511,6 +1512,7 @@
|
|||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini-1.5-pro-preview-0514": {
|
||||
|
@ -2007,6 +2009,7 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini/gemini-1.5-pro-latest": {
|
||||
|
@ -2023,6 +2026,7 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://ai.google.dev/models/gemini"
|
||||
},
|
||||
"gemini/gemini-pro-vision": {
|
||||
|
|
|
@ -663,3 +663,29 @@ def test_convert_model_response_object():
|
|||
e.message
|
||||
== '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}'
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model, expected_bool",
|
||||
[
|
||||
("vertex_ai/gemini-1.5-pro", True),
|
||||
("gemini/gemini-1.5-pro", True),
|
||||
("predibase/llama3-8b-instruct", True),
|
||||
("gpt-4o", False),
|
||||
],
|
||||
)
|
||||
def test_supports_response_schema(model, expected_bool):
|
||||
"""
|
||||
Unit tests for 'supports_response_schema' helper function.
|
||||
|
||||
Should be true for gemini-1.5-pro on google ai studio / vertex ai AND predibase models
|
||||
Should be false otherwise
|
||||
"""
|
||||
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
||||
litellm.model_cost = litellm.get_model_cost_map(url="")
|
||||
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
response = supports_response_schema(model=model, custom_llm_provider=None)
|
||||
|
||||
assert expected_bool == response
|
||||
|
|
|
@ -71,6 +71,7 @@ class ModelInfo(TypedDict, total=False):
|
|||
]
|
||||
supported_openai_params: Required[Optional[List[str]]]
|
||||
supports_system_messages: Optional[bool]
|
||||
supports_response_schema: Optional[bool]
|
||||
|
||||
|
||||
class GenericStreamingChunk(TypedDict):
|
||||
|
|
120
litellm/utils.py
120
litellm/utils.py
|
@ -1847,9 +1847,10 @@ def supports_system_messages(model: str, custom_llm_provider: Optional[str]) ->
|
|||
|
||||
Parameters:
|
||||
model (str): The model name to be checked.
|
||||
custom_llm_provider (str): The provider to be checked.
|
||||
|
||||
Returns:
|
||||
bool: True if the model supports function calling, False otherwise.
|
||||
bool: True if the model supports system messages, False otherwise.
|
||||
|
||||
Raises:
|
||||
Exception: If the given model is not found in model_prices_and_context_window.json.
|
||||
|
@ -1867,6 +1868,43 @@ def supports_system_messages(model: str, custom_llm_provider: Optional[str]) ->
|
|||
)
|
||||
|
||||
|
||||
def supports_response_schema(model: str, custom_llm_provider: Optional[str]) -> bool:
|
||||
"""
|
||||
Check if the given model + provider supports 'response_schema' as a param.
|
||||
|
||||
Parameters:
|
||||
model (str): The model name to be checked.
|
||||
custom_llm_provider (str): The provider to be checked.
|
||||
|
||||
Returns:
|
||||
bool: True if the model supports response_schema, False otherwise.
|
||||
|
||||
Raises:
|
||||
Exception: If the given model is not found in model_prices_and_context_window.json.
|
||||
"""
|
||||
try:
|
||||
## GET LLM PROVIDER ##
|
||||
model, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if custom_llm_provider == "predibase": # predibase supports this globally
|
||||
return True
|
||||
|
||||
## GET MODEL INFO
|
||||
model_info = litellm.get_model_info(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if model_info.get("supports_response_schema", False) is True:
|
||||
return True
|
||||
return False
|
||||
except Exception:
|
||||
raise Exception(
|
||||
f"Model not in model_prices_and_context_window.json. You passed model={model}, custom_llm_provider={custom_llm_provider}."
|
||||
)
|
||||
|
||||
|
||||
def supports_function_calling(model: str) -> bool:
|
||||
"""
|
||||
Check if the given model supports function calling and return a boolean value.
|
||||
|
@ -4434,8 +4472,7 @@ def get_max_tokens(model: str) -> Optional[int]:
|
|||
|
||||
def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo:
|
||||
"""
|
||||
Get a dict for the maximum tokens (context window),
|
||||
input_cost_per_token, output_cost_per_token for a given model.
|
||||
Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token for a given model.
|
||||
|
||||
Parameters:
|
||||
- model (str): The name of the model.
|
||||
|
@ -4520,6 +4557,7 @@ def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> Mod
|
|||
mode="chat",
|
||||
supported_openai_params=supported_openai_params,
|
||||
supports_system_messages=None,
|
||||
supports_response_schema=None,
|
||||
)
|
||||
else:
|
||||
"""
|
||||
|
@ -4541,36 +4579,6 @@ def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> Mod
|
|||
pass
|
||||
else:
|
||||
raise Exception
|
||||
return ModelInfo(
|
||||
max_tokens=_model_info.get("max_tokens", None),
|
||||
max_input_tokens=_model_info.get("max_input_tokens", None),
|
||||
max_output_tokens=_model_info.get("max_output_tokens", None),
|
||||
input_cost_per_token=_model_info.get("input_cost_per_token", 0),
|
||||
input_cost_per_character=_model_info.get(
|
||||
"input_cost_per_character", None
|
||||
),
|
||||
input_cost_per_token_above_128k_tokens=_model_info.get(
|
||||
"input_cost_per_token_above_128k_tokens", None
|
||||
),
|
||||
output_cost_per_token=_model_info.get("output_cost_per_token", 0),
|
||||
output_cost_per_character=_model_info.get(
|
||||
"output_cost_per_character", None
|
||||
),
|
||||
output_cost_per_token_above_128k_tokens=_model_info.get(
|
||||
"output_cost_per_token_above_128k_tokens", None
|
||||
),
|
||||
output_cost_per_character_above_128k_tokens=_model_info.get(
|
||||
"output_cost_per_character_above_128k_tokens", None
|
||||
),
|
||||
litellm_provider=_model_info.get(
|
||||
"litellm_provider", custom_llm_provider
|
||||
),
|
||||
mode=_model_info.get("mode"),
|
||||
supported_openai_params=supported_openai_params,
|
||||
supports_system_messages=_model_info.get(
|
||||
"supports_system_messages", None
|
||||
),
|
||||
)
|
||||
elif model in litellm.model_cost:
|
||||
_model_info = litellm.model_cost[model]
|
||||
_model_info["supported_openai_params"] = supported_openai_params
|
||||
|
@ -4584,36 +4592,6 @@ def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> Mod
|
|||
pass
|
||||
else:
|
||||
raise Exception
|
||||
return ModelInfo(
|
||||
max_tokens=_model_info.get("max_tokens", None),
|
||||
max_input_tokens=_model_info.get("max_input_tokens", None),
|
||||
max_output_tokens=_model_info.get("max_output_tokens", None),
|
||||
input_cost_per_token=_model_info.get("input_cost_per_token", 0),
|
||||
input_cost_per_character=_model_info.get(
|
||||
"input_cost_per_character", None
|
||||
),
|
||||
input_cost_per_token_above_128k_tokens=_model_info.get(
|
||||
"input_cost_per_token_above_128k_tokens", None
|
||||
),
|
||||
output_cost_per_token=_model_info.get("output_cost_per_token", 0),
|
||||
output_cost_per_character=_model_info.get(
|
||||
"output_cost_per_character", None
|
||||
),
|
||||
output_cost_per_token_above_128k_tokens=_model_info.get(
|
||||
"output_cost_per_token_above_128k_tokens", None
|
||||
),
|
||||
output_cost_per_character_above_128k_tokens=_model_info.get(
|
||||
"output_cost_per_character_above_128k_tokens", None
|
||||
),
|
||||
litellm_provider=_model_info.get(
|
||||
"litellm_provider", custom_llm_provider
|
||||
),
|
||||
mode=_model_info.get("mode"),
|
||||
supported_openai_params=supported_openai_params,
|
||||
supports_system_messages=_model_info.get(
|
||||
"supports_system_messages", None
|
||||
),
|
||||
)
|
||||
elif split_model in litellm.model_cost:
|
||||
_model_info = litellm.model_cost[split_model]
|
||||
_model_info["supported_openai_params"] = supported_openai_params
|
||||
|
@ -4627,6 +4605,15 @@ def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> Mod
|
|||
pass
|
||||
else:
|
||||
raise Exception
|
||||
else:
|
||||
raise ValueError(
|
||||
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
|
||||
)
|
||||
|
||||
## PROVIDER-SPECIFIC INFORMATION
|
||||
if custom_llm_provider == "predibase":
|
||||
_model_info["supports_response_schema"] = True
|
||||
|
||||
return ModelInfo(
|
||||
max_tokens=_model_info.get("max_tokens", None),
|
||||
max_input_tokens=_model_info.get("max_input_tokens", None),
|
||||
|
@ -4656,10 +4643,9 @@ def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> Mod
|
|||
supports_system_messages=_model_info.get(
|
||||
"supports_system_messages", None
|
||||
),
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
|
||||
supports_response_schema=_model_info.get(
|
||||
"supports_response_schema", None
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
raise Exception(
|
||||
|
|
|
@ -1486,6 +1486,7 @@
|
|||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini-1.5-pro-001": {
|
||||
|
@ -1511,6 +1512,7 @@
|
|||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini-1.5-pro-preview-0514": {
|
||||
|
@ -2007,6 +2009,7 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||
},
|
||||
"gemini/gemini-1.5-pro-latest": {
|
||||
|
@ -2023,6 +2026,7 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_response_schema": true,
|
||||
"source": "https://ai.google.dev/models/gemini"
|
||||
},
|
||||
"gemini/gemini-pro-vision": {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue