forked from phoenix/litellm-mirror
feat - make anthropic async
This commit is contained in:
parent
a2c63075ef
commit
58c4b02447
3 changed files with 231 additions and 140 deletions
|
@ -7,6 +7,9 @@ from typing import Callable, Optional, List
|
||||||
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
||||||
import litellm
|
import litellm
|
||||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||||
|
|
||||||
|
async_handler = AsyncHTTPHandler()
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
@ -36,7 +39,9 @@ class AnthropicConfig:
|
||||||
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
max_tokens: Optional[int] = 4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
max_tokens: Optional[int] = (
|
||||||
|
4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
||||||
|
)
|
||||||
stop_sequences: Optional[list] = None
|
stop_sequences: Optional[list] = None
|
||||||
temperature: Optional[int] = None
|
temperature: Optional[int] = None
|
||||||
top_p: Optional[int] = None
|
top_p: Optional[int] = None
|
||||||
|
@ -46,7 +51,9 @@ class AnthropicConfig:
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
max_tokens: Optional[int] = 4096, # You can pass in a value yourself or use the default value 4096
|
max_tokens: Optional[
|
||||||
|
int
|
||||||
|
] = 4096, # You can pass in a value yourself or use the default value 4096
|
||||||
stop_sequences: Optional[list] = None,
|
stop_sequences: Optional[list] = None,
|
||||||
temperature: Optional[int] = None,
|
temperature: Optional[int] = None,
|
||||||
top_p: Optional[int] = None,
|
top_p: Optional[int] = None,
|
||||||
|
@ -95,6 +102,169 @@ def validate_environment(api_key, user_headers):
|
||||||
return headers
|
return headers
|
||||||
|
|
||||||
|
|
||||||
|
def process_response(
|
||||||
|
model,
|
||||||
|
response,
|
||||||
|
model_response,
|
||||||
|
_is_function_call,
|
||||||
|
stream,
|
||||||
|
logging_obj,
|
||||||
|
api_key,
|
||||||
|
data,
|
||||||
|
messages,
|
||||||
|
print_verbose,
|
||||||
|
):
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
try:
|
||||||
|
completion_response = response.json()
|
||||||
|
except:
|
||||||
|
raise AnthropicError(message=response.text, status_code=response.status_code)
|
||||||
|
if "error" in completion_response:
|
||||||
|
raise AnthropicError(
|
||||||
|
message=str(completion_response["error"]),
|
||||||
|
status_code=response.status_code,
|
||||||
|
)
|
||||||
|
elif len(completion_response["content"]) == 0:
|
||||||
|
raise AnthropicError(
|
||||||
|
message="No content in response",
|
||||||
|
status_code=response.status_code,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_content = ""
|
||||||
|
tool_calls = []
|
||||||
|
for content in completion_response["content"]:
|
||||||
|
if content["type"] == "text":
|
||||||
|
text_content += content["text"]
|
||||||
|
## TOOL CALLING
|
||||||
|
elif content["type"] == "tool_use":
|
||||||
|
tool_calls.append(
|
||||||
|
{
|
||||||
|
"id": content["id"],
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": content["name"],
|
||||||
|
"arguments": json.dumps(content["input"]),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
_message = litellm.Message(
|
||||||
|
tool_calls=tool_calls,
|
||||||
|
content=text_content or None,
|
||||||
|
)
|
||||||
|
model_response.choices[0].message = _message # type: ignore
|
||||||
|
model_response._hidden_params["original_response"] = completion_response[
|
||||||
|
"content"
|
||||||
|
] # allow user to access raw anthropic tool calling response
|
||||||
|
|
||||||
|
model_response.choices[0].finish_reason = map_finish_reason(
|
||||||
|
completion_response["stop_reason"]
|
||||||
|
)
|
||||||
|
|
||||||
|
print_verbose(f"_is_function_call: {_is_function_call}; stream: {stream}")
|
||||||
|
if _is_function_call and stream:
|
||||||
|
print_verbose("INSIDE ANTHROPIC STREAMING TOOL CALLING CONDITION BLOCK")
|
||||||
|
# return an iterator
|
||||||
|
streaming_model_response = ModelResponse(stream=True)
|
||||||
|
streaming_model_response.choices[0].finish_reason = model_response.choices[
|
||||||
|
0
|
||||||
|
].finish_reason
|
||||||
|
# streaming_model_response.choices = [litellm.utils.StreamingChoices()]
|
||||||
|
streaming_choice = litellm.utils.StreamingChoices()
|
||||||
|
streaming_choice.index = model_response.choices[0].index
|
||||||
|
_tool_calls = []
|
||||||
|
print_verbose(
|
||||||
|
f"type of model_response.choices[0]: {type(model_response.choices[0])}"
|
||||||
|
)
|
||||||
|
print_verbose(f"type of streaming_choice: {type(streaming_choice)}")
|
||||||
|
if isinstance(model_response.choices[0], litellm.Choices):
|
||||||
|
if getattr(
|
||||||
|
model_response.choices[0].message, "tool_calls", None
|
||||||
|
) is not None and isinstance(
|
||||||
|
model_response.choices[0].message.tool_calls, list
|
||||||
|
):
|
||||||
|
for tool_call in model_response.choices[0].message.tool_calls:
|
||||||
|
_tool_call = {**tool_call.dict(), "index": 0}
|
||||||
|
_tool_calls.append(_tool_call)
|
||||||
|
delta_obj = litellm.utils.Delta(
|
||||||
|
content=getattr(model_response.choices[0].message, "content", None),
|
||||||
|
role=model_response.choices[0].message.role,
|
||||||
|
tool_calls=_tool_calls,
|
||||||
|
)
|
||||||
|
streaming_choice.delta = delta_obj
|
||||||
|
streaming_model_response.choices = [streaming_choice]
|
||||||
|
completion_stream = ModelResponseIterator(
|
||||||
|
model_response=streaming_model_response
|
||||||
|
)
|
||||||
|
print_verbose(
|
||||||
|
"Returns anthropic CustomStreamWrapper with 'cached_response' streaming object"
|
||||||
|
)
|
||||||
|
return CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="cached_response",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
|
||||||
|
## CALCULATING USAGE
|
||||||
|
prompt_tokens = completion_response["usage"]["input_tokens"]
|
||||||
|
completion_tokens = completion_response["usage"]["output_tokens"]
|
||||||
|
total_tokens = prompt_tokens + completion_tokens
|
||||||
|
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=total_tokens,
|
||||||
|
)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
|
||||||
|
async def acompletion_function(
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
_is_function_call,
|
||||||
|
data=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
response = await async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
return process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def completion(
|
def completion(
|
||||||
model: str,
|
model: str,
|
||||||
messages: list,
|
messages: list,
|
||||||
|
@ -106,6 +276,7 @@ def completion(
|
||||||
api_key,
|
api_key,
|
||||||
logging_obj,
|
logging_obj,
|
||||||
optional_params=None,
|
optional_params=None,
|
||||||
|
acompletion=None,
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
headers={},
|
headers={},
|
||||||
|
@ -184,148 +355,66 @@ def completion(
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
print_verbose(f"_is_function_call: {_is_function_call}")
|
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||||
## COMPLETION CALL
|
if acompletion == True:
|
||||||
if (
|
if optional_params.get("stream", False):
|
||||||
stream and not _is_function_call
|
pass
|
||||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
||||||
print_verbose("makes anthropic streaming POST request")
|
|
||||||
data["stream"] = stream
|
|
||||||
response = requests.post(
|
|
||||||
api_base,
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(data),
|
|
||||||
stream=stream,
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(
|
|
||||||
status_code=response.status_code, message=response.text
|
|
||||||
)
|
|
||||||
|
|
||||||
return response.iter_lines()
|
|
||||||
else:
|
|
||||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(
|
|
||||||
status_code=response.status_code, message=response.text
|
|
||||||
)
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.post_call(
|
|
||||||
input=messages,
|
|
||||||
api_key=api_key,
|
|
||||||
original_response=response.text,
|
|
||||||
additional_args={"complete_input_dict": data},
|
|
||||||
)
|
|
||||||
print_verbose(f"raw model_response: {response.text}")
|
|
||||||
## RESPONSE OBJECT
|
|
||||||
try:
|
|
||||||
completion_response = response.json()
|
|
||||||
except:
|
|
||||||
raise AnthropicError(
|
|
||||||
message=response.text, status_code=response.status_code
|
|
||||||
)
|
|
||||||
if "error" in completion_response:
|
|
||||||
raise AnthropicError(
|
|
||||||
message=str(completion_response["error"]),
|
|
||||||
status_code=response.status_code,
|
|
||||||
)
|
|
||||||
elif len(completion_response["content"]) == 0:
|
|
||||||
raise AnthropicError(
|
|
||||||
message="No content in response",
|
|
||||||
status_code=response.status_code,
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
text_content = ""
|
return acompletion_function(
|
||||||
tool_calls = []
|
model=model,
|
||||||
for content in completion_response["content"]:
|
messages=messages,
|
||||||
if content["type"] == "text":
|
data=data,
|
||||||
text_content += content["text"]
|
api_base=api_base,
|
||||||
## TOOL CALLING
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
elif content["type"] == "tool_use":
|
model_response=model_response,
|
||||||
tool_calls.append(
|
print_verbose=print_verbose,
|
||||||
{
|
encoding=encoding,
|
||||||
"id": content["id"],
|
api_key=api_key,
|
||||||
"type": "function",
|
logging_obj=logging_obj,
|
||||||
"function": {
|
optional_params=optional_params,
|
||||||
"name": content["name"],
|
stream=stream,
|
||||||
"arguments": json.dumps(content["input"]),
|
_is_function_call=_is_function_call,
|
||||||
},
|
litellm_params=litellm_params,
|
||||||
}
|
logger_fn=logger_fn,
|
||||||
)
|
headers=headers,
|
||||||
|
|
||||||
_message = litellm.Message(
|
|
||||||
tool_calls=tool_calls,
|
|
||||||
content=text_content or None,
|
|
||||||
)
|
)
|
||||||
model_response.choices[0].message = _message # type: ignore
|
else:
|
||||||
model_response._hidden_params["original_response"] = completion_response[
|
## COMPLETION CALL
|
||||||
"content"
|
if (
|
||||||
] # allow user to access raw anthropic tool calling response
|
stream and not _is_function_call
|
||||||
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||||
model_response.choices[0].finish_reason = map_finish_reason(
|
print_verbose("makes anthropic streaming POST request")
|
||||||
completion_response["stop_reason"]
|
data["stream"] = stream
|
||||||
|
response = requests.post(
|
||||||
|
api_base,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=stream,
|
||||||
)
|
)
|
||||||
|
|
||||||
print_verbose(f"_is_function_call: {_is_function_call}; stream: {stream}")
|
if response.status_code != 200:
|
||||||
if _is_function_call and stream:
|
raise AnthropicError(
|
||||||
print_verbose("INSIDE ANTHROPIC STREAMING TOOL CALLING CONDITION BLOCK")
|
status_code=response.status_code, message=response.text
|
||||||
# return an iterator
|
|
||||||
streaming_model_response = ModelResponse(stream=True)
|
|
||||||
streaming_model_response.choices[0].finish_reason = model_response.choices[
|
|
||||||
0
|
|
||||||
].finish_reason
|
|
||||||
# streaming_model_response.choices = [litellm.utils.StreamingChoices()]
|
|
||||||
streaming_choice = litellm.utils.StreamingChoices()
|
|
||||||
streaming_choice.index = model_response.choices[0].index
|
|
||||||
_tool_calls = []
|
|
||||||
print_verbose(
|
|
||||||
f"type of model_response.choices[0]: {type(model_response.choices[0])}"
|
|
||||||
)
|
|
||||||
print_verbose(f"type of streaming_choice: {type(streaming_choice)}")
|
|
||||||
if isinstance(model_response.choices[0], litellm.Choices):
|
|
||||||
if getattr(
|
|
||||||
model_response.choices[0].message, "tool_calls", None
|
|
||||||
) is not None and isinstance(
|
|
||||||
model_response.choices[0].message.tool_calls, list
|
|
||||||
):
|
|
||||||
for tool_call in model_response.choices[0].message.tool_calls:
|
|
||||||
_tool_call = {**tool_call.dict(), "index": 0}
|
|
||||||
_tool_calls.append(_tool_call)
|
|
||||||
delta_obj = litellm.utils.Delta(
|
|
||||||
content=getattr(model_response.choices[0].message, "content", None),
|
|
||||||
role=model_response.choices[0].message.role,
|
|
||||||
tool_calls=_tool_calls,
|
|
||||||
)
|
|
||||||
streaming_choice.delta = delta_obj
|
|
||||||
streaming_model_response.choices = [streaming_choice]
|
|
||||||
completion_stream = ModelResponseIterator(
|
|
||||||
model_response=streaming_model_response
|
|
||||||
)
|
|
||||||
print_verbose(
|
|
||||||
"Returns anthropic CustomStreamWrapper with 'cached_response' streaming object"
|
|
||||||
)
|
|
||||||
return CustomStreamWrapper(
|
|
||||||
completion_stream=completion_stream,
|
|
||||||
model=model,
|
|
||||||
custom_llm_provider="cached_response",
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
## CALCULATING USAGE
|
return response.iter_lines()
|
||||||
prompt_tokens = completion_response["usage"]["input_tokens"]
|
else:
|
||||||
completion_tokens = completion_response["usage"]["output_tokens"]
|
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
||||||
total_tokens = prompt_tokens + completion_tokens
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
model_response["created"] = int(time.time())
|
status_code=response.status_code, message=response.text
|
||||||
model_response["model"] = model
|
)
|
||||||
usage = Usage(
|
return process_response(
|
||||||
prompt_tokens=prompt_tokens,
|
model=model,
|
||||||
completion_tokens=completion_tokens,
|
response=response,
|
||||||
total_tokens=total_tokens,
|
model_response=model_response,
|
||||||
)
|
_is_function_call=_is_function_call,
|
||||||
model_response.usage = usage
|
stream=stream,
|
||||||
return model_response
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ModelResponseIterator:
|
class ModelResponseIterator:
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
import httpx, asyncio
|
import httpx, asyncio
|
||||||
from typing import Optional
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
|
||||||
class AsyncHTTPHandler:
|
class AsyncHTTPHandler:
|
||||||
|
@ -25,7 +25,7 @@ class AsyncHTTPHandler:
|
||||||
async def post(
|
async def post(
|
||||||
self,
|
self,
|
||||||
url: str,
|
url: str,
|
||||||
data: Optional[dict] = None,
|
data: Optional[Union[dict, str]] = None,
|
||||||
params: Optional[dict] = None,
|
params: Optional[dict] = None,
|
||||||
headers: Optional[dict] = None,
|
headers: Optional[dict] = None,
|
||||||
):
|
):
|
||||||
|
|
|
@ -304,6 +304,7 @@ async def acompletion(
|
||||||
or custom_llm_provider == "vertex_ai"
|
or custom_llm_provider == "vertex_ai"
|
||||||
or custom_llm_provider == "gemini"
|
or custom_llm_provider == "gemini"
|
||||||
or custom_llm_provider == "sagemaker"
|
or custom_llm_provider == "sagemaker"
|
||||||
|
or custom_llm_provider == "anthropic"
|
||||||
or custom_llm_provider in litellm.openai_compatible_providers
|
or custom_llm_provider in litellm.openai_compatible_providers
|
||||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||||
init_response = await loop.run_in_executor(None, func_with_context)
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
@ -1184,6 +1185,7 @@ def completion(
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
api_base=api_base,
|
api_base=api_base,
|
||||||
|
acompletion=acompletion,
|
||||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
print_verbose=print_verbose,
|
print_verbose=print_verbose,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue