(fix) litellm.text_completion raises a non-blocking error on simple usage (#6546)

* unit test test_huggingface_text_completion_logprobs

* fix return TextCompletionHandler convert_chat_to_text_completion

* fix hf rest api

* fix test_huggingface_text_completion_logprobs

* fix linting errors

* fix importLiteLLMResponseObjectHandler

* fix test for LiteLLMResponseObjectHandler

* fix test text completion
This commit is contained in:
Ishaan Jaff 2024-11-05 05:17:48 +05:30 committed by GitHub
parent 67ddf55ebd
commit 58ce30acee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 374 additions and 111 deletions

View file

@ -0,0 +1,141 @@
import json
import os
import sys
from datetime import datetime
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
import pytest
from litellm.utils import (
LiteLLMResponseObjectHandler,
)
from datetime import timedelta
from litellm.types.utils import (
ModelResponse,
TextCompletionResponse,
TextChoices,
Logprobs as TextCompletionLogprobs,
Usage,
)
def test_convert_chat_to_text_completion():
"""Test converting chat completion to text completion"""
chat_response = ModelResponse(
id="chat123",
created=1234567890,
model="gpt-3.5-turbo",
choices=[
{
"index": 0,
"message": {"content": "Hello, world!"},
"finish_reason": "stop",
}
],
usage={"total_tokens": 10, "completion_tokens": 10},
_hidden_params={"api_key": "test"},
)
text_completion = TextCompletionResponse()
result = LiteLLMResponseObjectHandler.convert_chat_to_text_completion(
response=chat_response, text_completion_response=text_completion
)
assert isinstance(result, TextCompletionResponse)
assert result.id == "chat123"
assert result.object == "text_completion"
assert result.created == 1234567890
assert result.model == "gpt-3.5-turbo"
assert result.choices[0].text == "Hello, world!"
assert result.choices[0].finish_reason == "stop"
assert result.usage == Usage(
completion_tokens=10,
prompt_tokens=0,
total_tokens=10,
completion_tokens_details=None,
prompt_tokens_details=None,
)
def test_convert_provider_response_logprobs():
"""Test converting provider logprobs to text completion logprobs"""
response = ModelResponse(
id="test123",
_hidden_params={
"original_response": {
"details": {"tokens": [{"text": "hello", "logprob": -1.0}]}
}
},
)
result = LiteLLMResponseObjectHandler._convert_provider_response_logprobs_to_text_completion_logprobs(
response=response, custom_llm_provider="huggingface"
)
# Note: The actual assertion here depends on the implementation of
# litellm.huggingface._transform_logprobs, but we can at least test the function call
assert (
result is not None or result is None
) # Will depend on the actual implementation
def test_convert_provider_response_logprobs_non_huggingface():
"""Test converting provider logprobs for non-huggingface provider"""
response = ModelResponse(id="test123", _hidden_params={})
result = LiteLLMResponseObjectHandler._convert_provider_response_logprobs_to_text_completion_logprobs(
response=response, custom_llm_provider="openai"
)
assert result is None
def test_convert_chat_to_text_completion_multiple_choices():
"""Test converting chat completion to text completion with multiple choices"""
chat_response = ModelResponse(
id="chat456",
created=1234567890,
model="gpt-3.5-turbo",
choices=[
{
"index": 0,
"message": {"content": "First response"},
"finish_reason": "stop",
},
{
"index": 1,
"message": {"content": "Second response"},
"finish_reason": "length",
},
],
usage={"total_tokens": 20},
_hidden_params={"api_key": "test"},
)
text_completion = TextCompletionResponse()
result = LiteLLMResponseObjectHandler.convert_chat_to_text_completion(
response=chat_response, text_completion_response=text_completion
)
assert isinstance(result, TextCompletionResponse)
assert result.id == "chat456"
assert result.object == "text_completion"
assert len(result.choices) == 2
assert result.choices[0].text == "First response"
assert result.choices[0].finish_reason == "stop"
assert result.choices[1].text == "Second response"
assert result.choices[1].finish_reason == "length"
assert result.usage == Usage(
completion_tokens=0,
prompt_tokens=0,
total_tokens=20,
completion_tokens_details=None,
prompt_tokens_details=None,
)

View file

@ -3,11 +3,15 @@ import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm.types.utils import TextCompletionResponse
@ -62,3 +66,71 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.token_logprobs == [None, -12.203847]
assert response.choices[0].logprobs.tokens == ["hello", " crisp"]
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
"details": {
"finish_reason": "length",
"generated_tokens": 100,
"seed": None,
"prefill": [],
"tokens": [
{"id": 28725, "text": ",", "logprob": -1.7626953, "special": False},
{"id": 13, "text": "\n", "logprob": -1.7314453, "special": False},
],
},
}
]
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
)
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
print("response=", response)
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0