forked from phoenix/litellm-mirror
fix get optional params
This commit is contained in:
parent
8f1b88c40b
commit
5a19ee1a71
10 changed files with 93 additions and 75 deletions
Binary file not shown.
Binary file not shown.
|
@ -18,6 +18,13 @@ class AnthropicError(Exception):
|
|||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
# contains any default values we need to pass to the provider
|
||||
AnthropicConfig = {
|
||||
"max_tokens_to_sample": 256 # override by setting - completion(..,max_tokens=300)
|
||||
}
|
||||
|
||||
|
||||
# makes headers for API call
|
||||
def validate_environment(api_key):
|
||||
if api_key is None:
|
||||
|
@ -63,13 +70,16 @@ def completion(
|
|||
else:
|
||||
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
||||
max_tokens_to_sample = optional_params.get("max_tokens_to_sample", 256) # required anthropic param, default to 256 if user does not provide an input
|
||||
if max_tokens_to_sample != 256: # not default - print for testing
|
||||
|
||||
## Load Config
|
||||
for k, v in AnthropicConfig.items():
|
||||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
if optional_params["max_tokens_to_sample"] != 256: # not default - print for testing
|
||||
print_verbose(f"LiteLLM.Anthropic: Max Tokens Set")
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"max_tokens_to_sample": max_tokens_to_sample,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
|
|
|
@ -19,7 +19,8 @@ class HuggingfaceError(Exception):
|
|||
|
||||
# contains any default values we need to pass to the provider
|
||||
HuggingfaceConfig = {
|
||||
"return_full_text": False # override by setting - completion(..,return_full_text=True)
|
||||
"return_full_text": False, # override by setting - completion(..,return_full_text=True)
|
||||
"details": True # needed for getting logprobs etc. for tgi models. override by setting - completion(..., details=False)
|
||||
}
|
||||
|
||||
def validate_environment(api_key):
|
||||
|
|
|
@ -14,6 +14,10 @@ class PetalsError(Exception):
|
|||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
PetalsConfig = {
|
||||
"max_new_tokens": 256
|
||||
}
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
|
@ -54,6 +58,10 @@ def completion(
|
|||
else:
|
||||
prompt += f"{message['content']}"
|
||||
|
||||
## Load Config
|
||||
for k, v in PetalsConfig.items():
|
||||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
|
|
|
@ -157,9 +157,9 @@ def completion(
|
|||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
n: Optional[int] = None,
|
||||
stream: bool = False,
|
||||
stream: Optional[bool] = None,
|
||||
stop=None,
|
||||
max_tokens: float = float("inf"),
|
||||
max_tokens: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float]=None,
|
||||
logit_bias: dict = {},
|
||||
|
@ -218,7 +218,7 @@ def completion(
|
|||
######## end of unpacking kwargs ###########
|
||||
args = locals()
|
||||
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "metadata"]
|
||||
litellm_params = ["return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "id", "metadata", "fallbacks"]
|
||||
litellm_params = ["return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "metadata", "fallbacks"]
|
||||
default_params = openai_params + litellm_params
|
||||
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
|
||||
if mock_response:
|
||||
|
|
|
@ -47,7 +47,7 @@ def test_completion_claude():
|
|||
print(response.response_ms)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_claude()
|
||||
test_completion_claude()
|
||||
|
||||
def test_completion_claude_max_tokens():
|
||||
try:
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from litellm import completion, stream_chunk_builder
|
||||
import litellm
|
||||
import os
|
||||
import os, dotenv
|
||||
dotenv.load_dotenv()
|
||||
|
||||
user_message = "What is the current weather in Boston?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
|
128
litellm/utils.py
128
litellm/utils.py
|
@ -977,6 +977,9 @@ def get_optional_params( # use the openai defaults
|
|||
raise ValueError("LiteLLM.Exception: Function calling is not supported by this provider")
|
||||
|
||||
def _check_valid_arg(supported_params):
|
||||
print(f"checking params for {model}")
|
||||
print(f"params passed in {passed_params}")
|
||||
print(f"non-default params passed in {non_default_params}")
|
||||
unsupported_params = [k for k in non_default_params.keys() if k not in supported_params]
|
||||
if unsupported_params:
|
||||
raise ValueError("LiteLLM.Exception: Unsupported parameters passed: {}".format(', '.join(unsupported_params)))
|
||||
|
@ -990,15 +993,14 @@ def get_optional_params( # use the openai defaults
|
|||
# handle anthropic params
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_tokens_to_sample"] = max_tokens
|
||||
return optional_params
|
||||
elif custom_llm_provider == "cohere":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "logit_bias"]
|
||||
|
@ -1006,13 +1008,12 @@ def get_optional_params( # use the openai defaults
|
|||
# handle cohere params
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if logit_bias != {}:
|
||||
optional_params["logit_bias"] = logit_bias
|
||||
return optional_params
|
||||
elif custom_llm_provider == "replicate":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop"]
|
||||
|
@ -1021,39 +1022,37 @@ def get_optional_params( # use the openai defaults
|
|||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
return optional_params
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
if "vicuna" in model or "flan" in model:
|
||||
optional_params["max_length"] = max_tokens
|
||||
else:
|
||||
optional_params["max_new_tokens"] = max_tokens
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
elif custom_llm_provider == "huggingface":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "return_full_text", "details"]
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop",]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if n != 1:
|
||||
if n:
|
||||
optional_params["best_of"] = n
|
||||
optional_params["do_sample"] = True # need to sample if you want best of for hf inference endpoints
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop"] = stop
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_new_tokens"] = max_tokens
|
||||
if presence_penalty != 0:
|
||||
if presence_penalty:
|
||||
optional_params["repetition_penalty"] = presence_penalty
|
||||
optional_params["return_full_text"] = return_full_text
|
||||
optional_params["details"] = True
|
||||
elif custom_llm_provider == "together_ai":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "frequency_penalty"]
|
||||
|
@ -1061,24 +1060,24 @@ def get_optional_params( # use the openai defaults
|
|||
|
||||
if stream:
|
||||
optional_params["stream_tokens"] = stream
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if frequency_penalty != 0:
|
||||
if frequency_penalty:
|
||||
optional_params["frequency_penalty"] = frequency_penalty # TODO: Check if should be repetition penalty
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop"] = stop #TG AI expects a list, example ["\n\n\n\n","<|endoftext|>"]
|
||||
elif custom_llm_provider == "palm":
|
||||
## check if unsupported param passed in
|
||||
supported_params = ["temperature", "top_p"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
elif (
|
||||
custom_llm_provider == "vertex_ai"
|
||||
|
@ -1087,13 +1086,13 @@ def get_optional_params( # use the openai defaults
|
|||
supported_params = ["temperature", "top_p", "max_tokens", "stream"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_output_tokens"] = max_tokens
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
if "llama-2" in model:
|
||||
|
@ -1108,11 +1107,11 @@ def get_optional_params( # use the openai defaults
|
|||
supported_params = ["temperature", "max_tokens"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_new_tokens"] = max_tokens
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
else:
|
||||
## check if unsupported param passed in
|
||||
|
@ -1124,92 +1123,90 @@ def get_optional_params( # use the openai defaults
|
|||
_check_valid_arg(supported_params=supported_params)
|
||||
# params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[],
|
||||
# https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["maxTokens"] = max_tokens
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["topP"] = top_p
|
||||
elif "anthropic" in model:
|
||||
supported_params = ["max_tokens", "temperature", "stop", "top_p"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
# anthropic params on bedrock
|
||||
# \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}"
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_tokens_to_sample"] = max_tokens
|
||||
else:
|
||||
optional_params["max_tokens_to_sample"] = 256 # anthropic fails without max_tokens_to_sample
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
elif "amazon" in model: # amazon titan llms
|
||||
supported_params = ["max_tokens", "temperature", "stop", "top_p"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["maxTokenCount"] = max_tokens
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stopSequences"] = stop
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["topP"] = top_p
|
||||
|
||||
elif model in litellm.aleph_alpha_models:
|
||||
supported_params = ["max_tokens", "stream", "top_p", "temperature", "presence_penalty", "frequency_penalty", "n", "stop"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["maximum_tokens"] = max_tokens
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if presence_penalty != 0:
|
||||
if presence_penalty:
|
||||
optional_params["presence_penalty"] = presence_penalty
|
||||
if frequency_penalty != 0:
|
||||
if frequency_penalty:
|
||||
optional_params["frequency_penalty"] = frequency_penalty
|
||||
if n != 1:
|
||||
if n:
|
||||
optional_params["n"] = n
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud":
|
||||
supported_params = ["max_tokens", "stream", "temperature", "top_p", "presence_penalty", "frequency_penalty", "n", "stop"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_length"] = max_tokens
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
if presence_penalty != 0:
|
||||
if presence_penalty:
|
||||
optional_params["presence_penalty"] = presence_penalty
|
||||
if frequency_penalty != 0:
|
||||
if frequency_penalty:
|
||||
optional_params["frequency_penalty"] = frequency_penalty
|
||||
if n != 1:
|
||||
if n:
|
||||
optional_params["num_return_sequences"] = n
|
||||
if stop != None:
|
||||
if stop:
|
||||
optional_params["stop_sequences"] = stop
|
||||
elif model in litellm.petals_models or custom_llm_provider == "petals":
|
||||
supported_params = ["max_tokens", "temperature", "top_p"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
# max_new_tokens=1,temperature=0.9, top_p=0.6
|
||||
if max_tokens != float("inf"):
|
||||
if max_tokens:
|
||||
optional_params["max_new_tokens"] = max_tokens
|
||||
else:
|
||||
optional_params["max_new_tokens"] = 256 # petals always needs max_new_tokens
|
||||
if temperature != 1:
|
||||
if temperature:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p != 1:
|
||||
if top_p:
|
||||
optional_params["top_p"] = top_p
|
||||
else: # assume passing in params for openai/azure openai
|
||||
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "logit_bias", "user", "deployment_id"]
|
||||
|
@ -1219,6 +1216,7 @@ def get_optional_params( # use the openai defaults
|
|||
for k in passed_params.keys():
|
||||
if k not in default_params.keys():
|
||||
optional_params[k] = passed_params[k]
|
||||
print(f"final params going to model: {optional_params}")
|
||||
return optional_params
|
||||
|
||||
def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.809"
|
||||
version = "0.1.810"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue