docs(routing.md): add docs on using caching groups across deployments

This commit is contained in:
Krrish Dholakia 2023-12-15 21:51:59 -08:00
parent 84ad9f441e
commit 5b4ca42de6
2 changed files with 58 additions and 197 deletions

View file

@ -366,6 +366,63 @@ router = Router(model_list: Optional[list] = None,
cache_responses=True)
```
## Caching across model groups
If you want to cache across 2 different model groups (e.g. azure deployments, and openai), use caching groups.
```python
import litellm, asyncio, time
from litellm import Router
# set os env
os.environ["OPENAI_API_KEY"] = ""
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
async def test_acompletion_caching_on_router_caching_groups():
# tests acompletion + caching on router
try:
litellm.set_verbose = True
model_list = [
{
"model_name": "openai-gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo-0613",
"api_key": os.getenv("OPENAI_API_KEY"),
},
},
{
"model_name": "azure-gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION")
},
}
]
messages = [
{"role": "user", "content": f"write a one sentence poem {time.time()}?"}
]
start_time = time.time()
router = Router(model_list=model_list,
cache_responses=True,
caching_groups=[("openai-gpt-3.5-turbo", "azure-gpt-3.5-turbo")])
response1 = await router.acompletion(model="openai-gpt-3.5-turbo", messages=messages, temperature=1)
print(f"response1: {response1}")
await asyncio.sleep(1) # add cache is async, async sleep for cache to get set
response2 = await router.acompletion(model="azure-gpt-3.5-turbo", messages=messages, temperature=1)
assert response1.id == response2.id
assert len(response1.choices[0].message.content) > 0
assert response1.choices[0].message.content == response2.choices[0].message.content
except Exception as e:
traceback.print_exc()
asyncio.run(test_acompletion_caching_on_router_caching_groups())
```
#### Default litellm.completion/embedding params
You can also set default params for litellm completion/embedding calls. Here's how to do that:
@ -391,200 +448,3 @@ print(f"response: {response}")
## Deploy Router
If you want a server to load balance across different LLM APIs, use our [OpenAI Proxy Server](./simple_proxy#load-balancing---multiple-instances-of-1-model)
## Queuing (Beta)
**Never fail a request due to rate limits**
The LiteLLM Queuing endpoints can handle 100+ req/s. We use Celery workers to process requests.
:::info
This is pretty new, and might have bugs. Any contributions to improving our implementation are welcome
:::
[**See Code**](https://github.com/BerriAI/litellm/blob/fbf9cab5b9e35df524e2c9953180c58d92e4cd97/litellm/proxy/proxy_server.py#L589)
### Quick Start
1. Add Redis credentials in a .env file
```python
REDIS_HOST="my-redis-endpoint"
REDIS_PORT="my-redis-port"
REDIS_PASSWORD="my-redis-password" # [OPTIONAL] if self-hosted
REDIS_USERNAME="default" # [OPTIONAL] if self-hosted
```
2. Start litellm server with your model config
```bash
$ litellm --config /path/to/config.yaml --use_queue
```
Here's an example config for `gpt-3.5-turbo`
**config.yaml** (This will load balance between OpenAI + Azure endpoints)
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2 # actual model name
api_key:
api_version: 2023-07-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
```
3. Test (in another window) → sends 100 simultaneous requests to the queue
```bash
$ litellm --test_async --num_requests 100
```
### Available Endpoints
- `/queue/request` - Queues a /chat/completions request. Returns a job id.
- `/queue/response/{id}` - Returns the status of a job. If completed, returns the response as well. Potential status's are: `queued` and `finished`.
## Hosted Request Queing api.litellm.ai
Queue your LLM API requests to ensure you're under your rate limits
- Step 1: Step 1 Add a config to the proxy, generate a temp key
- Step 2: Queue a request to the proxy, using your generated_key
- Step 3: Poll the request
### Step 1 Add a config to the proxy, generate a temp key
```python
import requests
import time
import os
# Set the base URL as needed
base_url = "https://api.litellm.ai"
# Step 1 Add a config to the proxy, generate a temp key
# use the same model_name to load balance
config = {
"model_list": [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.environ['OPENAI_API_KEY'],
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": "",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_version": "2023-07-01-preview"
}
}
]
}
response = requests.post(
url=f"{base_url}/key/generate",
json={
"config": config,
"duration": "30d" # default to 30d, set it to 30m if you want a temp 30 minute key
},
headers={
"Authorization": "Bearer sk-hosted-litellm" # this is the key to use api.litellm.ai
}
)
print("\nresponse from generating key", response.text)
print("\n json response from gen key", response.json())
generated_key = response.json()["key"]
print("\ngenerated key for proxy", generated_key)
```
#### Output
```shell
response from generating key {"key":"sk-...,"expires":"2023-12-22T03:43:57.615000+00:00"}
```
### Step 2: Queue a request to the proxy, using your generated_key
```python
print("Creating a job on the proxy")
job_response = requests.post(
url=f"{base_url}/queue/request",
json={
'model': 'gpt-3.5-turbo',
'messages': [
{'role': 'system', 'content': f'You are a helpful assistant. What is your name'},
],
},
headers={
"Authorization": f"Bearer {generated_key}"
}
)
print(job_response.status_code)
print(job_response.text)
print("\nResponse from creating job", job_response.text)
job_response = job_response.json()
job_id = job_response["id"]
polling_url = job_response["url"]
polling_url = f"{base_url}{polling_url}"
print("\nCreated Job, Polling Url", polling_url)
```
#### Output
```shell
Response from creating job
{"id":"0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","url":"/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","eta":5,"status":"queued"}
```
### Step 3: Poll the request
```python
while True:
try:
print("\nPolling URL", polling_url)
polling_response = requests.get(
url=polling_url,
headers={
"Authorization": f"Bearer {generated_key}"
}
)
print("\nResponse from polling url", polling_response.text)
polling_response = polling_response.json()
status = polling_response.get("status", None)
if status == "finished":
llm_response = polling_response["result"]
print("LLM Response")
print(llm_response)
break
time.sleep(0.5)
except Exception as e:
print("got exception in polling", e)
break
```
#### Output
```shell
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
Response from polling url {"status":"queued"}
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
Response from polling url {"status":"queued"}
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
Response from polling url
{"status":"finished","result":{"id":"chatcmpl-8NYRce4IeI4NzYyodT3NNp8fk5cSW","choices":[{"finish_reason":"stop","index":0,"message":{"content":"I am an AI assistant and do not have a physical presence or personal identity. You can simply refer to me as \"Assistant.\" How may I assist you today?","role":"assistant"}}],"created":1700624639,"model":"gpt-3.5-turbo-0613","object":"chat.completion","system_fingerprint":null,"usage":{"completion_tokens":33,"prompt_tokens":17,"total_tokens":50}}}
```

View file

@ -14,6 +14,7 @@ import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx
import litellm
from litellm import ( # type: ignore
client,
exception_type,