Adds tests and updates docs for Claude "pre-fill"

This commit is contained in:
spdustin@gmail.com 2024-01-05 22:58:41 +00:00
parent 53e5e1df07
commit 5d074f5b56
3 changed files with 171 additions and 28 deletions

View file

@ -1,7 +1,7 @@
# Anthropic
LiteLLM supports
- `claude-2.1`
- `claude-2`
- `claude-2.1`
- `claude-instant-1`
- `claude-instant-1.2`
@ -14,7 +14,7 @@ import os
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
```
## Sample Usage
## Usage
```python
import os
@ -28,7 +28,29 @@ response = completion(model="claude-instant-1", messages=messages)
print(response)
```
## streaming
## Usage - "Assistant Pre-fill"
You can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
> [!IMPORTANT]
> The returned completion will _not_ include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.
```python
import os
from litellm import completion
# set env - [OPTIONAL] replace with your anthropic key
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
messages = [
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\"}"},
{"role": "assistant", "content": "{"},
]
response = completion(model="claude-2.1", messages=messages)
print(response)
```
## Streaming
Just set `stream=True` when calling completion.
```python

View file

@ -34,6 +34,58 @@ response = completion(
)
```
## Usage - "Assistant Pre-fill"
If you're using Anthropic's Claude with Bedrock, you can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
> [!IMPORTANT]
> The returned completion will _**not**_ include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.
```python
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
messages = [
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\"}"},
{"role": "assistant", "content": "{"},
]
response = completion(model="anthropic.claude-v2", messages=messages)
```
## Usage - "System" messages
If you're using Anthropic's Claude 2.1 with Bedrock, `system` role messages are properly formatted for you.
```python
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
messages = [
{"role": "system", "content": "You are a snarky assistant."},
{"role": "user", "content": "How do I boil water?"},
]
response = completion(model="anthropic.claude-v2:1", messages=messages)
```
### Example prompt sent to Claude
```
You are a snarky assistant.
Human: How do I boil water?
Assistant:
```
## Usage - Streaming
```python
import os

View file

@ -2,27 +2,96 @@
# This tests if prompts are being correctly formatted
import sys
import os
import io
sys.path.insert(0, os.path.abspath("../.."))
# from litellm.llms.prompt_templates.factory import prompt_factory
from litellm import completion
from litellm.llms.prompt_templates.factory import (
anthropic_pt,
claude_2_1_pt,
llama_2_chat_pt,
)
def codellama_prompt_format():
model = "huggingface/codellama/CodeLlama-7b-Instruct-hf"
def test_codellama_prompt_format():
messages = [
{"role": "system", "content": "You are a good bot"},
{"role": "user", "content": "Hey, how's it going?"},
]
expected_response = """[INST] <<SYS>>
You are a good bot
<</SYS>>
[/INST]
[INST] Hey, how's it going? [/INST]"""
response = completion(model=model, messages=messages)
print(response)
expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
assert llama_2_chat_pt(messages) == expected_prompt
def test_claude_2_1_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should insert blank Human message
# before Assistant pre-fill
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = (
"You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
)
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
def test_anthropic_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert anthropic_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should NOT insert blank Human message
# before Assistant pre-fill, because "System" messages are Human
# messages wrapped with <admin></admin>
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
# codellama_prompt_format()