Merge pull request #5415 from BerriAI/litellm_add_ssml_vertex_Ai

Feat - Add Google Text-to-Speech support ssml
This commit is contained in:
Ishaan Jaff 2024-08-28 14:44:27 -07:00 committed by GitHub
commit 5f7718db5c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 242 additions and 5 deletions

View file

@ -1768,7 +1768,7 @@ LiteLLM supports calling [Vertex AI Text to Speech API](https://console.cloud.go
Usage
### Usage - Basic
<Tabs>
<TabItem value="sdk" label="SDK">
@ -1841,6 +1841,150 @@ print("response from proxy", response)
</Tabs>
### Usage - `ssml` as input
Pass your `ssml` as input to the `input` param, if it contains `<speak>`, it will be automatically detected and passed as `ssml` to the Vertex AI API
If you need to force your `input` to be passed as `ssml`, set `use_ssml=True`
<Tabs>
<TabItem value="sdk" label="SDK">
Vertex AI does not support passing a `model` param - so passing `model=vertex_ai/` is the only required param
```python
speech_file_path = Path(__file__).parent / "speech_vertex.mp3"
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
response = litellm.speech(
input=ssml,
model="vertex_ai/test",
voice={
"languageCode": "en-UK",
"name": "en-UK-Studio-O",
},
audioConfig={
"audioEncoding": "LINEAR22",
"speakingRate": "10",
},
)
response.stream_to_file(speech_file_path)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM PROXY (Unified Endpoint)">
```python
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
# see supported values for "voice" on vertex here:
# https://console.cloud.google.com/vertex-ai/generative/speech/text-to-speech
response = client.audio.speech.create(
model = "vertex-tts",
input=ssml,
voice={'languageCode': 'en-US', 'name': 'en-US-Studio-O'},
)
print("response from proxy", response)
```
</TabItem>
</Tabs>
### Forcing SSML Usage
You can force the use of SSML by setting the `use_ssml` parameter to `True`. This is useful when you want to ensure that your input is treated as SSML, even if it doesn't contain the `<speak>` tags.
Here are examples of how to force SSML usage:
<Tabs>
<TabItem value="sdk" label="SDK">
Vertex AI does not support passing a `model` param - so passing `model=vertex_ai/` is the only required param
```python
speech_file_path = Path(__file__).parent / "speech_vertex.mp3"
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
response = litellm.speech(
input=ssml,
use_ssml=True,
model="vertex_ai/test",
voice={
"languageCode": "en-UK",
"name": "en-UK-Studio-O",
},
audioConfig={
"audioEncoding": "LINEAR22",
"speakingRate": "10",
},
)
response.stream_to_file(speech_file_path)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM PROXY (Unified Endpoint)">
```python
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
# see supported values for "voice" on vertex here:
# https://console.cloud.google.com/vertex-ai/generative/speech/text-to-speech
response = client.audio.speech.create(
model = "vertex-tts",
input=ssml, # pass as None since OpenAI SDK requires this param
voice={'languageCode': 'en-US', 'name': 'en-US-Studio-O'},
extra_body={"use_ssml": True},
)
print("response from proxy", response)
```
</TabItem>
</Tabs>
## Extra
### Using `GOOGLE_APPLICATION_CREDENTIALS`

View file

@ -19,7 +19,8 @@ from litellm.llms.vertex_ai_and_google_ai_studio.vertex_and_google_ai_studio_gem
class VertexInput(TypedDict, total=False):
text: str
text: Optional[str]
ssml: Optional[str]
class VertexVoice(TypedDict, total=False):
@ -86,10 +87,13 @@ class VertexTextToSpeechAPI(VertexLLM):
####### Build the request ################
# API Ref: https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize
vertex_input = VertexInput(text=input)
# required param
optional_params = optional_params or {}
kwargs = kwargs or {}
optional_params = optional_params or {}
vertex_input = VertexInput(text=input)
validate_vertex_input(vertex_input, kwargs, optional_params)
# required param
if voice is not None:
vertex_voice = VertexVoice(**voice)
elif "voice" in kwargs:
@ -203,3 +207,34 @@ class VertexTextToSpeechAPI(VertexLLM):
# Initialize the HttpxBinaryResponseContent instance
http_binary_response = HttpxBinaryResponseContent(response)
return http_binary_response
def validate_vertex_input(
input_data: VertexInput, kwargs: dict, optional_params: dict
) -> None:
# Remove None values
if input_data.get("text") is None:
input_data.pop("text", None)
if input_data.get("ssml") is None:
input_data.pop("ssml", None)
# Check if use_ssml is set
use_ssml = kwargs.get("use_ssml", optional_params.get("use_ssml", False))
if use_ssml:
if "text" in input_data:
input_data["ssml"] = input_data.pop("text")
elif "ssml" not in input_data:
raise ValueError("SSML input is required when use_ssml is True.")
else:
# LiteLLM will auto-detect if text is in ssml format
# check if "text" is an ssml - in this case we should pass it as ssml instead of text
if input_data:
_text = input_data.get("text", None) or ""
if "<speak>" in _text:
input_data["ssml"] = input_data.pop("text")
if not input_data:
raise ValueError("Either 'text' or 'ssml' must be provided.")
if "text" in input_data and "ssml" in input_data:
raise ValueError("Only one of 'text' or 'ssml' should be provided, not both.")

View file

@ -243,3 +243,61 @@ async def test_speech_litellm_vertex_async_with_voice():
"voice": {"languageCode": "en-UK", "name": "en-UK-Studio-O"},
"audioConfig": {"audioEncoding": "LINEAR22", "speakingRate": "10"},
}
@pytest.mark.asyncio
async def test_speech_litellm_vertex_async_with_voice_ssml():
# Mock the response
mock_response = AsyncMock()
def return_val():
return {
"audioContent": "dGVzdCByZXNwb25zZQ==",
}
mock_response.json = return_val
mock_response.status_code = 200
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
# Set up the mock for asynchronous calls
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
new_callable=AsyncMock,
) as mock_async_post:
mock_async_post.return_value = mock_response
model = "vertex_ai/test"
response = await litellm.aspeech(
input=ssml,
model=model,
voice={
"languageCode": "en-UK",
"name": "en-UK-Studio-O",
},
audioConfig={
"audioEncoding": "LINEAR22",
"speakingRate": "10",
},
)
# Assert asynchronous call
mock_async_post.assert_called_once()
_, kwargs = mock_async_post.call_args
print("call args", kwargs)
assert kwargs["url"] == "https://texttospeech.googleapis.com/v1/text:synthesize"
assert "x-goog-user-project" in kwargs["headers"]
assert kwargs["headers"]["Authorization"] is not None
assert kwargs["json"] == {
"input": {"ssml": ssml},
"voice": {"languageCode": "en-UK", "name": "en-UK-Studio-O"},
"audioConfig": {"audioEncoding": "LINEAR22", "speakingRate": "10"},
}