forked from phoenix/litellm-mirror
(feat) weights & biases logger
This commit is contained in:
parent
667f51b3bd
commit
5fd7720029
2 changed files with 235 additions and 2 deletions
219
litellm/integrations/weights_biases.py
Normal file
219
litellm/integrations/weights_biases.py
Normal file
|
@ -0,0 +1,219 @@
|
|||
imported_openAIResponse=True
|
||||
try:
|
||||
import io
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Dict, List, Optional, TypeVar
|
||||
|
||||
from wandb.sdk.data_types import trace_tree
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import Literal, Protocol
|
||||
else:
|
||||
from typing_extensions import Literal, Protocol
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
K = TypeVar("K", bound=str)
|
||||
V = TypeVar("V")
|
||||
|
||||
|
||||
class OpenAIResponse(Protocol[K, V]):
|
||||
# contains a (known) object attribute
|
||||
object: Literal["chat.completion", "edit", "text_completion"]
|
||||
|
||||
def __getitem__(self, key: K) -> V:
|
||||
... # pragma: no cover
|
||||
|
||||
def get(self, key: K, default: Optional[V] = None) -> Optional[V]:
|
||||
... # pragma: no cover
|
||||
|
||||
|
||||
class OpenAIRequestResponseResolver:
|
||||
def __call__(
|
||||
self,
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
time_elapsed: float,
|
||||
) -> Optional[trace_tree.WBTraceTree]:
|
||||
try:
|
||||
if response["object"] == "edit":
|
||||
return self._resolve_edit(request, response, time_elapsed)
|
||||
elif response["object"] == "text_completion":
|
||||
return self._resolve_completion(request, response, time_elapsed)
|
||||
elif response["object"] == "chat.completion":
|
||||
return self._resolve_chat_completion(request, response, time_elapsed)
|
||||
else:
|
||||
logger.info(f"Unknown OpenAI response object: {response['object']}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to resolve request/response: {e}")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def results_to_trace_tree(
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
results: List[trace_tree.Result],
|
||||
time_elapsed: float,
|
||||
) -> trace_tree.WBTraceTree:
|
||||
"""Converts the request, response, and results into a trace tree.
|
||||
|
||||
params:
|
||||
request: The request dictionary
|
||||
response: The response object
|
||||
results: A list of results object
|
||||
time_elapsed: The time elapsed in seconds
|
||||
returns:
|
||||
A wandb trace tree object.
|
||||
"""
|
||||
start_time_ms = int(round(response["created"] * 1000))
|
||||
end_time_ms = start_time_ms + int(round(time_elapsed * 1000))
|
||||
span = trace_tree.Span(
|
||||
name=f"{response.get('model', 'openai')}_{response['object']}_{response.get('created')}",
|
||||
attributes=dict(response), # type: ignore
|
||||
start_time_ms=start_time_ms,
|
||||
end_time_ms=end_time_ms,
|
||||
span_kind=trace_tree.SpanKind.LLM,
|
||||
results=results,
|
||||
)
|
||||
model_obj = {"request": request, "response": response, "_kind": "openai"}
|
||||
return trace_tree.WBTraceTree(root_span=span, model_dict=model_obj)
|
||||
|
||||
def _resolve_edit(
|
||||
self,
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
time_elapsed: float,
|
||||
) -> trace_tree.WBTraceTree:
|
||||
"""Resolves the request and response objects for `openai.Edit`."""
|
||||
request_str = (
|
||||
f"\n\n**Instruction**: {request['instruction']}\n\n"
|
||||
f"**Input**: {request['input']}\n"
|
||||
)
|
||||
choices = [
|
||||
f"\n\n**Edited**: {choice['text']}\n" for choice in response["choices"]
|
||||
]
|
||||
|
||||
return self._request_response_result_to_trace(
|
||||
request=request,
|
||||
response=response,
|
||||
request_str=request_str,
|
||||
choices=choices,
|
||||
time_elapsed=time_elapsed,
|
||||
)
|
||||
|
||||
def _resolve_completion(
|
||||
self,
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
time_elapsed: float,
|
||||
) -> trace_tree.WBTraceTree:
|
||||
"""Resolves the request and response objects for `openai.Completion`."""
|
||||
request_str = f"\n\n**Prompt**: {request['prompt']}\n"
|
||||
choices = [
|
||||
f"\n\n**Completion**: {choice['text']}\n" for choice in response["choices"]
|
||||
]
|
||||
|
||||
return self._request_response_result_to_trace(
|
||||
request=request,
|
||||
response=response,
|
||||
request_str=request_str,
|
||||
choices=choices,
|
||||
time_elapsed=time_elapsed,
|
||||
)
|
||||
|
||||
def _resolve_chat_completion(
|
||||
self,
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
time_elapsed: float,
|
||||
) -> trace_tree.WBTraceTree:
|
||||
"""Resolves the request and response objects for `openai.Completion`."""
|
||||
prompt = io.StringIO()
|
||||
for message in request["messages"]:
|
||||
prompt.write(f"\n\n**{message['role']}**: {message['content']}\n")
|
||||
request_str = prompt.getvalue()
|
||||
|
||||
choices = [
|
||||
f"\n\n**{choice['message']['role']}**: {choice['message']['content']}\n"
|
||||
for choice in response["choices"]
|
||||
]
|
||||
|
||||
return self._request_response_result_to_trace(
|
||||
request=request,
|
||||
response=response,
|
||||
request_str=request_str,
|
||||
choices=choices,
|
||||
time_elapsed=time_elapsed,
|
||||
)
|
||||
|
||||
def _request_response_result_to_trace(
|
||||
self,
|
||||
request: Dict[str, Any],
|
||||
response: OpenAIResponse,
|
||||
request_str: str,
|
||||
choices: List[str],
|
||||
time_elapsed: float,
|
||||
) -> trace_tree.WBTraceTree:
|
||||
"""Resolves the request and response objects for `openai.Completion`."""
|
||||
results = [
|
||||
trace_tree.Result(
|
||||
inputs={"request": request_str},
|
||||
outputs={"response": choice},
|
||||
)
|
||||
for choice in choices
|
||||
]
|
||||
trace = self.results_to_trace_tree(request, response, results, time_elapsed)
|
||||
return trace
|
||||
except:
|
||||
imported_openAIResponse=False
|
||||
|
||||
|
||||
|
||||
#### What this does ####
|
||||
# On success, logs events to Langfuse
|
||||
import dotenv, os
|
||||
import requests
|
||||
import requests
|
||||
from datetime import datetime
|
||||
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
|
||||
class WeightsBiasesLogger:
|
||||
# Class variables or attributes
|
||||
def __init__(self):
|
||||
try:
|
||||
import wandb
|
||||
except:
|
||||
raise Exception("\033[91m wandb not installed, try running 'pip install wandb' to fix this error\033[0m")
|
||||
if imported_openAIResponse==False:
|
||||
raise Exception("\033[91m wandb not installed, try running 'pip install wandb' to fix this error\033[0m")
|
||||
self.resolver = OpenAIRequestResponseResolver()
|
||||
|
||||
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
|
||||
# Method definition
|
||||
import wandb
|
||||
|
||||
try:
|
||||
print_verbose(
|
||||
f"W&B Logging - Enters logging function for model {kwargs}"
|
||||
)
|
||||
run = wandb.init()
|
||||
print_verbose(response_obj)
|
||||
|
||||
trace = self.resolver(kwargs, response_obj, (end_time-start_time).total_seconds())
|
||||
|
||||
if trace is not None:
|
||||
run.log({"trace": trace})
|
||||
|
||||
run.finish()
|
||||
print_verbose(
|
||||
f"W&B Logging Logging - final response object: {response_obj}"
|
||||
)
|
||||
except:
|
||||
# traceback.print_exc()
|
||||
print_verbose(f"W&B Logging Layer Error - {traceback.format_exc()}")
|
||||
pass
|
|
@ -34,6 +34,7 @@ from .integrations.berrispend import BerriSpendLogger
|
|||
from .integrations.supabase import Supabase
|
||||
from .integrations.llmonitor import LLMonitorLogger
|
||||
from .integrations.prompt_layer import PromptLayerLogger
|
||||
from .integrations.weights_biases import WeightsBiasesLogger
|
||||
from .integrations.custom_logger import CustomLogger
|
||||
from .integrations.langfuse import LangFuseLogger
|
||||
from .integrations.litedebugger import LiteDebugger
|
||||
|
@ -64,6 +65,7 @@ slack_app = None
|
|||
alerts_channel = None
|
||||
heliconeLogger = None
|
||||
promptLayerLogger = None
|
||||
weightsBiasesLogger = None
|
||||
customLogger = None
|
||||
langFuseLogger = None
|
||||
llmonitorLogger = None
|
||||
|
@ -221,7 +223,7 @@ class CallTypes(Enum):
|
|||
|
||||
# Logging function -> log the exact model details + what's being sent | Non-Blocking
|
||||
class Logging:
|
||||
global supabaseClient, liteDebuggerClient, promptLayerLogger, capture_exception, add_breadcrumb
|
||||
global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, capture_exception, add_breadcrumb
|
||||
|
||||
def __init__(self, model, messages, stream, call_type, start_time, litellm_call_id, function_id):
|
||||
if call_type not in [item.value for item in CallTypes]:
|
||||
|
@ -515,6 +517,16 @@ class Logging:
|
|||
litellm_call_id=litellm_params.get("litellm_call_id", str(uuid.uuid4())),
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
if callback == "wandb":
|
||||
print_verbose("reaches wandb for logging!")
|
||||
weightsBiasesLogger.log_event(
|
||||
kwargs=self.model_call_details,
|
||||
response_obj=result,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
|
||||
if callable(callback): # custom logger functions
|
||||
customLogger.log_event(
|
||||
kwargs=self.model_call_details,
|
||||
|
@ -1933,7 +1945,7 @@ def validate_environment(model: Optional[str]=None) -> dict:
|
|||
return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
|
||||
|
||||
def set_callbacks(callback_list, function_id=None):
|
||||
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger
|
||||
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger
|
||||
try:
|
||||
for callback in callback_list:
|
||||
print_verbose(f"callback: {callback}")
|
||||
|
@ -1996,6 +2008,8 @@ def set_callbacks(callback_list, function_id=None):
|
|||
promptLayerLogger = PromptLayerLogger()
|
||||
elif callback == "langfuse":
|
||||
langFuseLogger = LangFuseLogger()
|
||||
elif callback == "wandb":
|
||||
weightsBiasesLogger = WeightsBiasesLogger()
|
||||
elif callback == "aispend":
|
||||
aispendLogger = AISpendLogger()
|
||||
elif callback == "berrispend":
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue