LiteLLM Minor Fixes & Improvements (10/09/2024) (#6139)

* fix(utils.py): don't return 'none' response headers

Fixes https://github.com/BerriAI/litellm/issues/6123

* fix(vertex_and_google_ai_studio_gemini.py): support parsing out additional properties and strict value for tool calls

Fixes https://github.com/BerriAI/litellm/issues/6136

* fix(cost_calculator.py): set default character value to none

Fixes https://github.com/BerriAI/litellm/issues/6133#issuecomment-2403290196

* fix(google.py): fix cost per token / cost per char conversion

Fixes https://github.com/BerriAI/litellm/issues/6133#issuecomment-2403370287

* build(model_prices_and_context_window.json): update gemini pricing

Fixes https://github.com/BerriAI/litellm/issues/6133

* build(model_prices_and_context_window.json): update gemini pricing

* fix(litellm_logging.py): fix streaming caching logging when 'turn_off_message_logging' enabled

Stores unredacted response in cache

* build(model_prices_and_context_window.json): update gemini-1.5-flash pricing

* fix(cost_calculator.py): fix default prompt_character count logic

Fixes error in gemini cost calculation

* fix(cost_calculator.py): fix cost calc for tts models
This commit is contained in:
Krish Dholakia 2024-10-10 00:42:11 -07:00 committed by GitHub
parent 60baa65e0e
commit 6005450c8f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
16 changed files with 788 additions and 534 deletions

View file

@ -664,9 +664,39 @@ def test_unmapped_gemini_model_params():
assert optional_params["stop_sequences"] == ["stop_word"]
def test_drop_nested_params_vllm():
def _check_additional_properties(schema):
if isinstance(schema, dict):
# Remove the 'additionalProperties' key if it exists and is set to False
if "additionalProperties" in schema or "strict" in schema:
raise ValueError(
"additionalProperties and strict should not be in the schema"
)
# Recursively process all dictionary values
for key, value in schema.items():
_check_additional_properties(value)
elif isinstance(schema, list):
# Recursively process all items in the list
for item in schema:
_check_additional_properties(item)
return schema
@pytest.mark.parametrize(
"provider, model",
[
("hosted_vllm", "my-vllm-model"),
("gemini", "gemini-1.5-pro"),
("vertex_ai", "gemini-1.5-pro"),
],
)
def test_drop_nested_params_add_prop_and_strict(provider, model):
"""
Relevant issue - https://github.com/BerriAI/litellm/issues/5288
Relevant issue - https://github.com/BerriAI/litellm/issues/6136
"""
tools = [
{
@ -690,8 +720,8 @@ def test_drop_nested_params_vllm():
]
tool_choice = {"type": "function", "function": {"name": "structure_output"}}
optional_params = get_optional_params(
model="my-vllm-model",
custom_llm_provider="hosted_vllm",
model=model,
custom_llm_provider=provider,
temperature=0.2,
tools=tools,
tool_choice=tool_choice,
@ -700,7 +730,5 @@ def test_drop_nested_params_vllm():
["tools", "function", "additionalProperties"],
],
)
print(optional_params["tools"][0]["function"])
assert "additionalProperties" not in optional_params["tools"][0]["function"]
assert "strict" not in optional_params["tools"][0]["function"]
_check_additional_properties(optional_params["tools"])

View file

@ -0,0 +1,83 @@
import json
import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
from unittest.mock import AsyncMock, MagicMock, patch
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
def test_completion_pydantic_obj_2():
from pydantic import BaseModel
from litellm.llms.custom_httpx.http_handler import HTTPHandler
litellm.set_verbose = True
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
messages = [
{"role": "user", "content": "List important events from the 20th century."}
]
expected_request_body = {
"contents": [
{
"role": "user",
"parts": [{"text": "List important events from the 20th century."}],
}
],
"generationConfig": {
"response_mime_type": "application/json",
"response_schema": {
"properties": {
"events": {
"items": {
"properties": {
"name": {"type": "string"},
"date": {"type": "string"},
"participants": {
"items": {"type": "string"},
"type": "array",
},
},
"type": "object",
},
"type": "array",
}
},
"type": "object",
},
},
}
client = HTTPHandler()
with patch.object(client, "post", new=MagicMock()) as mock_post:
mock_post.return_value = expected_request_body
try:
litellm.completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format=EventsList,
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
assert mock_post.call_args.kwargs["json"] == expected_request_body

View file

@ -2209,3 +2209,28 @@ async def test_redis_proxy_batch_redis_get_cache():
print(response._hidden_params)
assert "cache_key" in response._hidden_params
def test_logging_turn_off_message_logging_streaming():
litellm.turn_off_message_logging = True
mock_obj = Cache(type="local")
litellm.cache = mock_obj
with patch.object(mock_obj, "add_cache", new=MagicMock()) as mock_client:
print(f"mock_obj.add_cache: {mock_obj.add_cache}")
resp = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
mock_response="hello",
stream=True,
)
for chunk in resp:
continue
time.sleep(1)
mock_client.assert_called_once()
assert mock_client.call_args.args[0].choices[0].message.content == "hello"

View file

@ -1711,31 +1711,6 @@ def test_completion_perplexity_api():
# test_completion_perplexity_api()
@pytest.mark.skip(
reason="too many requests. Hitting gemini rate limits. Convert to mock test."
)
def test_completion_pydantic_obj_2():
from pydantic import BaseModel
litellm.set_verbose = True
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
messages = [
{"role": "user", "content": "List important events from the 20th century."}
]
response = litellm.completion(
model="gemini/gemini-1.5-pro", messages=messages, response_format=EventsList
)
@pytest.mark.skip(reason="this test is flaky")
def test_completion_perplexity_api_2():
try:
@ -4573,12 +4548,7 @@ async def test_completion_ai21_chat():
@pytest.mark.parametrize(
"model",
[
"gpt-4o",
"azure/chatgpt-v-2",
"claude-3-sonnet-20240229",
"fireworks_ai/mixtral-8x7b-instruct",
],
["gpt-4o", "azure/chatgpt-v-2", "claude-3-sonnet-20240229"],
)
@pytest.mark.parametrize(
"stream",
@ -4594,5 +4564,7 @@ def test_completion_response_ratelimit_headers(model, stream):
additional_headers = hidden_params.get("additional_headers", {})
print(additional_headers)
for k, v in additional_headers.items():
assert v != "None" and v is not None
assert "x-ratelimit-remaining-requests" in additional_headers
assert "x-ratelimit-remaining-tokens" in additional_headers

View file

@ -2359,3 +2359,131 @@ def test_together_ai_embedding_completion_cost():
custom_llm_provider="together_ai",
call_type="embedding",
)
def test_completion_cost_params():
"""
Relevant Issue: https://github.com/BerriAI/litellm/issues/6133
"""
litellm.set_verbose = True
resp1_prompt_cost, resp1_completion_cost = cost_per_token(
model="gemini-1.5-pro-002",
prompt_tokens=1000,
completion_tokens=1000,
custom_llm_provider="vertex_ai_beta",
)
resp2_prompt_cost, resp2_completion_cost = cost_per_token(
model="gemini-1.5-pro-002", prompt_tokens=1000, completion_tokens=1000
)
assert resp2_prompt_cost > 0
assert resp1_prompt_cost == resp2_prompt_cost
assert resp1_completion_cost == resp2_completion_cost
resp3_prompt_cost, resp3_completion_cost = cost_per_token(
model="vertex_ai/gemini-1.5-pro-002", prompt_tokens=1000, completion_tokens=1000
)
assert resp3_prompt_cost > 0
assert resp3_prompt_cost == resp1_prompt_cost
assert resp3_completion_cost == resp1_completion_cost
def test_completion_cost_params_2():
"""
Relevant Issue: https://github.com/BerriAI/litellm/issues/6133
"""
litellm.set_verbose = True
prompt_characters = 1000
completion_characters = 1000
resp1_prompt_cost, resp1_completion_cost = cost_per_token(
model="gemini-1.5-pro-002",
prompt_characters=prompt_characters,
completion_characters=completion_characters,
prompt_tokens=1000,
completion_tokens=1000,
)
print(resp1_prompt_cost, resp1_completion_cost)
model_info = litellm.get_model_info("gemini-1.5-pro-002")
input_cost_per_character = model_info["input_cost_per_character"]
output_cost_per_character = model_info["output_cost_per_character"]
assert resp1_prompt_cost == input_cost_per_character * prompt_characters
assert resp1_completion_cost == output_cost_per_character * completion_characters
def test_completion_cost_params_gemini_3():
from litellm.utils import Choices, Message, ModelResponse, Usage
from litellm.litellm_core_utils.llm_cost_calc.google import cost_per_character
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
response = ModelResponse(
id="chatcmpl-61043504-4439-48be-9996-e29bdee24dc3",
choices=[
Choices(
finish_reason="stop",
index=0,
message=Message(
content="Sí. \n",
role="assistant",
tool_calls=None,
function_call=None,
),
)
],
created=1728529259,
model="gemini-1.5-flash",
object="chat.completion",
system_fingerprint=None,
usage=Usage(
completion_tokens=2,
prompt_tokens=3771,
total_tokens=3773,
completion_tokens_details=None,
prompt_tokens_details=None,
),
vertex_ai_grounding_metadata=[],
vertex_ai_safety_results=[
[
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability": "NEGLIGIBLE",
},
{"category": "HARM_CATEGORY_HATE_SPEECH", "probability": "NEGLIGIBLE"},
{"category": "HARM_CATEGORY_HARASSMENT", "probability": "NEGLIGIBLE"},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability": "NEGLIGIBLE",
},
]
],
vertex_ai_citation_metadata=[],
)
pc, cc = cost_per_character(
**{
"model": "gemini-1.5-flash",
"custom_llm_provider": "vertex_ai",
"prompt_tokens": 3771,
"completion_tokens": 2,
"prompt_characters": None,
"completion_characters": 3,
}
)
model_info = litellm.get_model_info("gemini-1.5-flash")
assert round(pc, 10) == round(3771 * model_info["input_cost_per_token"], 10)
assert round(cc, 10) == round(
3 * model_info["output_cost_per_character"],
10,
)

View file

@ -1414,6 +1414,7 @@ def test_logging_standard_payload_llm_headers(stream):
with patch.object(
customHandler, "log_success_event", new=MagicMock()
) as mock_client:
resp = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],

View file

@ -68,3 +68,9 @@ def test_get_model_info_finetuned_models():
info = litellm.get_model_info("ft:gpt-3.5-turbo:my-org:custom_suffix:id")
print("info", info)
assert info["input_cost_per_token"] == 0.000003
def test_get_model_info_gemini_pro():
info = litellm.get_model_info("gemini-1.5-pro-002")
print("info", info)
assert info["key"] == "gemini-1.5-pro-002"