docs: add github provider to docs

This commit is contained in:
Krrish Dholakia 2024-08-03 09:20:23 -07:00
parent 4258295a07
commit 696e75d69c
3 changed files with 265 additions and 2 deletions

View file

@ -48,10 +48,10 @@ Use `litellm.get_supported_openai_params()` for an updated list of params for ea
|Anyscale | ✅ | ✅ | ✅ | ✅ | ✅ |
|Cohere| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|Huggingface| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ | | | | |
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ | | | | |
|AI21| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|VertexAI| ✅ | ✅ | | ✅ | ✅ | | | | | | | | | ✅ | ✅ | | |
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | ✅ (for anthropic) | |
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | ✅ (model dependent) | |
|Sagemaker| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
|TogetherAI| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | ✅ |
|AlephAlpha| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
@ -61,6 +61,7 @@ Use `litellm.get_supported_openai_params()` for an updated list of params for ea
|Ollama| ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | | | | ✅ | | |✅| | | | | | |
|Databricks| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | |
|ClarifAI| ✅ | ✅ | |✅ | ✅ | | | | | | | | | | |
|Github| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ |✅ (model dependent)|✅ (model dependent)| | |
:::note
By default, LiteLLM raises an exception if the openai param being passed in isn't supported.

View file

@ -0,0 +1,261 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 🆕 Github
https://github.com/marketplace/models
:::tip
**We support ALL Github models, just set `model=groq/<any-model-on-github>` as a prefix when sending litellm requests**
:::
## API Key
```python
# env variable
os.environ['GITHUB_API_KEY']
```
## Sample Usage
```python
from litellm import completion
import os
os.environ['GITHUB_API_KEY'] = ""
response = completion(
model="github/llama3-8b-8192",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)
```
## Sample Usage - Streaming
```python
from litellm import completion
import os
os.environ['GITHUB_API_KEY'] = ""
response = completion(
model="github/llama3-8b-8192",
messages=[
{"role": "user", "content": "hello from litellm"}
],
stream=True
)
for chunk in response:
print(chunk)
```
## Usage with LiteLLM Proxy
### 1. Set Github Models on config.yaml
```yaml
model_list:
- model_name: github-llama3-8b-8192 # Model Alias to use for requests
litellm_params:
model: github/llama3-8b-8192
api_key: "os.environ/GITHUB_API_KEY" # ensure you have `GITHUB_API_KEY` in your .env
```
### 2. Start Proxy
```
litellm --config config.yaml
```
### 3. Test it
Make request to litellm proxy
<Tabs>
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "github-llama3-8b-8192",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
```
</TabItem>
<TabItem value="openai" label="OpenAI v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="github-llama3-8b-8192", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "github-llama3-8b-8192",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Supported Models - ALL Github Models Supported!
We support ALL Github models, just set `github/` as a prefix when sending completion requests
| Model Name | Usage |
|--------------------|---------------------------------------------------------|
| llama-3.1-8b-instant | `completion(model="github/llama-3.1-8b-instant", messages)` |
| llama-3.1-70b-versatile | `completion(model="github/llama-3.1-70b-versatile", messages)` |
| llama-3.1-405b-reasoning | `completion(model="github/llama-3.1-405b-reasoning", messages)` |
| llama3-8b-8192 | `completion(model="github/llama3-8b-8192", messages)` |
| llama3-70b-8192 | `completion(model="github/llama3-70b-8192", messages)` |
| llama2-70b-4096 | `completion(model="github/llama2-70b-4096", messages)` |
| mixtral-8x7b-32768 | `completion(model="github/mixtral-8x7b-32768", messages)` |
| gemma-7b-it | `completion(model="github/gemma-7b-it", messages)` |
## Github - Tool / Function Calling Example
```python
# Example dummy function hard coded to return the current weather
import json
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
)
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "system",
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
},
{
"role": "user",
"content": "What's the weather like in San Francisco?",
},
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="github/llama3-8b-8192",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
}
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="github/llama3-8b-8192", messages=messages
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
```

View file

@ -161,6 +161,7 @@ const sidebars = {
"providers/perplexity",
"providers/friendliai",
"providers/groq",
"providers/github",
"providers/deepseek",
"providers/fireworks_ai",
"providers/clarifai",