forked from phoenix/litellm-mirror
docs: add github provider to docs
This commit is contained in:
parent
4258295a07
commit
696e75d69c
3 changed files with 265 additions and 2 deletions
|
@ -48,10 +48,10 @@ Use `litellm.get_supported_openai_params()` for an updated list of params for ea
|
|||
|Anyscale | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|Cohere| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|Huggingface| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
|
||||
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ | | | | |
|
||||
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ |✅ | | | |
|
||||
|AI21| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|VertexAI| ✅ | ✅ | | ✅ | ✅ | | | | | | | | | ✅ | ✅ | | |
|
||||
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | ✅ (for anthropic) | |
|
||||
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | ✅ (model dependent) | |
|
||||
|Sagemaker| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
|
||||
|TogetherAI| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | ✅ |
|
||||
|AlephAlpha| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | |
|
||||
|
@ -61,6 +61,7 @@ Use `litellm.get_supported_openai_params()` for an updated list of params for ea
|
|||
|Ollama| ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | | | | ✅ | | |✅| | | | | | |
|
||||
|Databricks| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | |
|
||||
|ClarifAI| ✅ | ✅ | |✅ | ✅ | | | | | | | | | | |
|
||||
|Github| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | ✅ |✅ (model dependent)|✅ (model dependent)| | |
|
||||
:::note
|
||||
|
||||
By default, LiteLLM raises an exception if the openai param being passed in isn't supported.
|
||||
|
|
261
docs/my-website/docs/providers/github.md
Normal file
261
docs/my-website/docs/providers/github.md
Normal file
|
@ -0,0 +1,261 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# 🆕 Github
|
||||
https://github.com/marketplace/models
|
||||
|
||||
:::tip
|
||||
|
||||
**We support ALL Github models, just set `model=groq/<any-model-on-github>` as a prefix when sending litellm requests**
|
||||
|
||||
:::
|
||||
|
||||
## API Key
|
||||
```python
|
||||
# env variable
|
||||
os.environ['GITHUB_API_KEY']
|
||||
```
|
||||
|
||||
## Sample Usage
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['GITHUB_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="github/llama3-8b-8192",
|
||||
messages=[
|
||||
{"role": "user", "content": "hello from litellm"}
|
||||
],
|
||||
)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## Sample Usage - Streaming
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['GITHUB_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="github/llama3-8b-8192",
|
||||
messages=[
|
||||
{"role": "user", "content": "hello from litellm"}
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Usage with LiteLLM Proxy
|
||||
|
||||
### 1. Set Github Models on config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: github-llama3-8b-8192 # Model Alias to use for requests
|
||||
litellm_params:
|
||||
model: github/llama3-8b-8192
|
||||
api_key: "os.environ/GITHUB_API_KEY" # ensure you have `GITHUB_API_KEY` in your .env
|
||||
```
|
||||
|
||||
### 2. Start Proxy
|
||||
|
||||
```
|
||||
litellm --config config.yaml
|
||||
```
|
||||
|
||||
### 3. Test it
|
||||
|
||||
Make request to litellm proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "github-llama3-8b-8192",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(model="github-llama3-8b-8192", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
||||
model = "github-llama3-8b-8192",
|
||||
temperature=0.1
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
## Supported Models - ALL Github Models Supported!
|
||||
We support ALL Github models, just set `github/` as a prefix when sending completion requests
|
||||
|
||||
| Model Name | Usage |
|
||||
|--------------------|---------------------------------------------------------|
|
||||
| llama-3.1-8b-instant | `completion(model="github/llama-3.1-8b-instant", messages)` |
|
||||
| llama-3.1-70b-versatile | `completion(model="github/llama-3.1-70b-versatile", messages)` |
|
||||
| llama-3.1-405b-reasoning | `completion(model="github/llama-3.1-405b-reasoning", messages)` |
|
||||
| llama3-8b-8192 | `completion(model="github/llama3-8b-8192", messages)` |
|
||||
| llama3-70b-8192 | `completion(model="github/llama3-70b-8192", messages)` |
|
||||
| llama2-70b-4096 | `completion(model="github/llama2-70b-4096", messages)` |
|
||||
| mixtral-8x7b-32768 | `completion(model="github/mixtral-8x7b-32768", messages)` |
|
||||
| gemma-7b-it | `completion(model="github/gemma-7b-it", messages)` |
|
||||
|
||||
## Github - Tool / Function Calling Example
|
||||
|
||||
```python
|
||||
# Example dummy function hard coded to return the current weather
|
||||
import json
|
||||
def get_current_weather(location, unit="fahrenheit"):
|
||||
"""Get the current weather in a given location"""
|
||||
if "tokyo" in location.lower():
|
||||
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||
elif "san francisco" in location.lower():
|
||||
return json.dumps(
|
||||
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
||||
)
|
||||
elif "paris" in location.lower():
|
||||
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||
else:
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
|
||||
|
||||
|
||||
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco?",
|
||||
},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model="github/llama3-8b-8192",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
)
|
||||
print("Response\n", response)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
}
|
||||
messages.append(
|
||||
response_message
|
||||
) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="github/llama3-8b-8192", messages=messages
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
```
|
|
@ -161,6 +161,7 @@ const sidebars = {
|
|||
"providers/perplexity",
|
||||
"providers/friendliai",
|
||||
"providers/groq",
|
||||
"providers/github",
|
||||
"providers/deepseek",
|
||||
"providers/fireworks_ai",
|
||||
"providers/clarifai",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue