fix(vertex_ai.py): add support for real async streaming + completion calls

This commit is contained in:
Krrish Dholakia 2023-12-13 11:53:55 -08:00
parent 07015843ac
commit 69c29f8f86
5 changed files with 134 additions and 49 deletions

View file

@ -4,7 +4,7 @@ from enum import Enum
import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper
import litellm
import httpx
@ -108,37 +108,38 @@ def completion(
mode = "chat"
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
elif model in litellm.vertex_text_models:
text_model = TextGenerationModel.from_pretrained(model)
llm_model = TextGenerationModel.from_pretrained(model)
mode = "text"
request_str += f"text_model = TextGenerationModel.from_pretrained({model})\n"
request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
elif model in litellm.vertex_code_text_models:
text_model = CodeGenerationModel.from_pretrained(model)
llm_model = CodeGenerationModel.from_pretrained(model)
mode = "text"
request_str += f"text_model = CodeGenerationModel.from_pretrained({model})\n"
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
else: # vertex_code_llm_models
llm_model = CodeChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
if acompletion == True and model in litellm.vertex_language_models: # [TODO] expand support to vertex ai chat + text models
if acompletion == True: # [TODO] expand support to vertex ai chat + text models
if optional_params.get("stream", False) is True:
# async streaming
pass
return async_completion(llm_model=llm_model, mode=mode, prompt=prompt, logging_obj=logging_obj, request_str=request_str, model=model, model_response=model_response, **optional_params)
return async_streaming(llm_model=llm_model, mode=mode, prompt=prompt, logging_obj=logging_obj, request_str=request_str, model=model, model_response=model_response, **optional_params)
return async_completion(llm_model=llm_model, mode=mode, prompt=prompt, logging_obj=logging_obj, request_str=request_str, model=model, model_response=model_response, encoding=encoding, **optional_params)
if mode == "":
chat = llm_model.start_chat()
request_str+= f"chat = llm_model.start_chat()\n"
if "stream" in optional_params and optional_params["stream"] == True:
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
stream = optional_params.pop("stream")
request_str += f"chat.send_message({prompt}, generation_config=GenerationConfig(**{optional_params}), stream={stream})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
model_response = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
model_response = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params), stream=stream)
optional_params["stream"] = True
return model_response
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
request_str += f"chat.send_message({prompt}, generation_config=GenerationConfig(**{optional_params})).text\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
@ -165,20 +166,19 @@ def completion(
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
completion_response = chat.send_message(prompt, **optional_params).text
elif mode == "text":
if "stream" in optional_params and optional_params["stream"] == True:
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
request_str += f"text_model.predict_streaming({prompt}, **{optional_params})\n"
request_str += f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
model_response = text_model.predict_streaming(prompt, **optional_params)
model_response = llm_model.predict_streaming(prompt, **optional_params)
optional_params["stream"] = True
return model_response
request_str += f"text_model.predict({prompt}, **{optional_params}).text\n"
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
completion_response = text_model.predict(prompt, **optional_params).text
completion_response = llm_model.predict(prompt, **optional_params).text
## LOGGING
logging_obj.post_call(
@ -216,7 +216,7 @@ def completion(
except Exception as e:
raise VertexAIError(status_code=500, message=str(e))
async def async_completion(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, **optional_params):
async def async_completion(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, encoding=None, **optional_params):
"""
Add support for acompletion calls for gemini-pro
"""
@ -224,19 +224,31 @@ async def async_completion(llm_model, mode: str, prompt: str, model: str, model_
if mode == "":
# gemini-pro
llm_model = llm_model.start_chat()
chat = llm_model.start_chat()
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = await llm_model.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
response_obj = await chat.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
completion_response = response_obj.text
response_obj = response_obj._raw_response
elif mode == "chat":
# chat-bison etc.
pass
chat = llm_model.start_chat()
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = await chat.send_message_async(prompt, **optional_params)
completion_response = response_obj.text
elif mode == "text":
# gecko etc.
pass
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = await llm_model.predict_async(prompt, **optional_params)
completion_response = response_obj.text
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
)
## RESPONSE OBJECT
if len(str(completion_response)) > 0:
@ -252,13 +264,53 @@ async def async_completion(llm_model, mode: str, prompt: str, model: str, model_
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count)
else:
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
return model_response
def async_streaming():
async def async_streaming(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, **optional_params):
"""
Add support for async streaming calls for gemini-pro
"""
from vertexai.preview.generative_models import GenerationConfig
if mode == "":
# gemini-pro
chat = llm_model.start_chat()
stream = optional_params.pop("stream")
request_str += f"chat.send_message_async({prompt},generation_config=GenerationConfig(**{optional_params}), stream={stream})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response = await chat.send_message_async(prompt, generation_config=GenerationConfig(**optional_params), stream=stream)
optional_params["stream"] = True
elif mode == "chat":
chat = llm_model.start_chat()
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
request_str += f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response = chat.send_message_streaming_async(prompt, **optional_params)
optional_params["stream"] = True
elif mode == "text":
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
request_str += f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response = llm_model.predict_streaming_async(prompt, **optional_params)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="vertex_ai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
def embedding():
# logic for parsing in - calling - parsing out model embedding calls

View file

@ -1157,7 +1157,7 @@ def completion(
acompletion=acompletion
)
if "stream" in optional_params and optional_params["stream"] == True:
if "stream" in optional_params and optional_params["stream"] == True and acompletion == False:
response = CustomStreamWrapper(
model_response, model, custom_llm_provider="vertex_ai", logging_obj=logging
)

View file

@ -73,7 +73,7 @@ def test_vertex_ai():
litellm.vertex_project = "hardy-device-386718"
test_models = random.sample(test_models, 4)
test_models = litellm.vertex_language_models # always test gemini-pro
test_models += litellm.vertex_language_models # always test gemini-pro
for model in test_models:
try:
if model in ["code-gecko@001", "code-gecko@latest", "code-bison@001", "text-bison@001"]:
@ -87,7 +87,7 @@ def test_vertex_ai():
assert len(response.choices[0].message.content) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_vertex_ai()
# test_vertex_ai()
def test_vertex_ai_stream():
load_vertex_ai_credentials()
@ -120,16 +120,48 @@ def test_vertex_ai_stream():
@pytest.mark.asyncio
async def test_async_vertexai_response():
import random
load_vertex_ai_credentials()
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
response = await acompletion(model="gemini-pro", messages=messages, temperature=0.7, timeout=5)
# response = await response
print(f"response: {response}")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
test_models = litellm.vertex_chat_models + litellm.vertex_code_chat_models + litellm.vertex_text_models + litellm.vertex_code_text_models
test_models = random.sample(test_models, 4)
test_models += litellm.vertex_language_models # always test gemini-pro
for model in test_models:
print(f'model being tested in async call: {model}')
try:
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model=model, messages=messages, temperature=0.7, timeout=5)
print(f"response: {response}")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
asyncio.run(test_async_vertexai_response())
# asyncio.run(test_async_vertexai_response())
@pytest.mark.asyncio
async def test_async_vertexai_streaming_response():
import random
load_vertex_ai_credentials()
test_models = litellm.vertex_chat_models + litellm.vertex_code_chat_models + litellm.vertex_text_models + litellm.vertex_code_text_models
test_models = random.sample(test_models, 4)
test_models += litellm.vertex_language_models # always test gemini-pro
for model in test_models:
try:
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="gemini-pro", messages=messages, temperature=0.7, timeout=5, stream=True)
print(f"response: {response}")
complete_response = ""
async for chunk in response:
print(f"chunk: {chunk}")
complete_response += chunk.choices[0].delta.content
print(f"complete_response: {complete_response}")
assert len(complete_response) > 0
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
pytest.fail(f"An exception occurred: {e}")
# asyncio.run(test_async_vertexai_streaming_response())

View file

@ -19,6 +19,7 @@ import uuid
import aiohttp
import logging
import asyncio, httpx, inspect
from inspect import iscoroutine
import copy
from tokenizers import Tokenizer
from dataclasses import (
@ -5769,7 +5770,8 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "azure"
or self.custom_llm_provider == "custom_openai"
or self.custom_llm_provider == "text-completion-openai"
or self.custom_llm_provider == "huggingface"):
or self.custom_llm_provider == "huggingface"
or self.custom_llm_provider == "vertex_ai"):
async for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception

View file

@ -294,14 +294,21 @@
"max_tokens": 2048,
"input_cost_per_token": 0.000000125,
"output_cost_per_token": 0.000000125,
"litellm_provider": "vertex_ai-chat-models",
"litellm_provider": "vertex_ai-code-text-models",
"mode": "completion"
},
"code-gecko@latest": {
"code-gecko@002": {
"max_tokens": 2048,
"input_cost_per_token": 0.000000125,
"output_cost_per_token": 0.000000125,
"litellm_provider": "vertex_ai-chat-models",
"litellm_provider": "vertex_ai-code-text-models",
"mode": "completion"
},
"code-gecko": {
"max_tokens": 2048,
"input_cost_per_token": 0.000000125,
"output_cost_per_token": 0.000000125,
"litellm_provider": "vertex_ai-code-text-models",
"mode": "completion"
},
"codechat-bison": {
@ -340,14 +347,6 @@
"litellm_provider": "palm",
"mode": "chat"
},
"gemini-pro": {
"max_tokens": 30720,
"max_output_tokens": 2048,
"input_cost_per_token": 0.0000000625,
"output_cost_per_token": 0.000000125,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"palm/chat-bison-001": {
"max_tokens": 4096,
"input_cost_per_token": 0.000000125,