forked from phoenix/litellm-mirror
fix dd logging tests
This commit is contained in:
parent
f9a40e5db3
commit
6b08c4ab81
2 changed files with 210 additions and 248 deletions
|
@ -1,246 +0,0 @@
|
||||||
import io
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath("../.."))
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import gzip
|
|
||||||
import json
|
|
||||||
import logging
|
|
||||||
import time
|
|
||||||
from unittest.mock import AsyncMock, patch
|
|
||||||
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
import litellm
|
|
||||||
from litellm import completion
|
|
||||||
from litellm._logging import verbose_logger
|
|
||||||
from litellm.integrations.datadog.types import DatadogPayload
|
|
||||||
|
|
||||||
verbose_logger.setLevel(logging.DEBUG)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_datadog_logging_http_request():
|
|
||||||
"""
|
|
||||||
- Test that the HTTP request is made to Datadog
|
|
||||||
- sent to the /api/v2/logs endpoint
|
|
||||||
- the payload is batched
|
|
||||||
- each element in the payload is a DatadogPayload
|
|
||||||
- each element in a DatadogPayload.message contains all the valid fields
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
from litellm.integrations.datadog.datadog import DataDogLogger
|
|
||||||
|
|
||||||
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
|
||||||
os.environ["DD_API_KEY"] = "anything"
|
|
||||||
dd_logger = DataDogLogger()
|
|
||||||
|
|
||||||
litellm.callbacks = [dd_logger]
|
|
||||||
|
|
||||||
litellm.set_verbose = True
|
|
||||||
|
|
||||||
# Create a mock for the async_client's post method
|
|
||||||
mock_post = AsyncMock()
|
|
||||||
mock_post.return_value.status_code = 202
|
|
||||||
mock_post.return_value.text = "Accepted"
|
|
||||||
dd_logger.async_client.post = mock_post
|
|
||||||
|
|
||||||
# Make the completion call
|
|
||||||
for _ in range(5):
|
|
||||||
response = await litellm.acompletion(
|
|
||||||
model="gpt-3.5-turbo",
|
|
||||||
messages=[{"role": "user", "content": "what llm are u"}],
|
|
||||||
max_tokens=10,
|
|
||||||
temperature=0.2,
|
|
||||||
mock_response="Accepted",
|
|
||||||
)
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
# Wait for 5 seconds
|
|
||||||
await asyncio.sleep(6)
|
|
||||||
|
|
||||||
# Assert that the mock was called
|
|
||||||
assert mock_post.called, "HTTP request was not made"
|
|
||||||
|
|
||||||
# Get the arguments of the last call
|
|
||||||
args, kwargs = mock_post.call_args
|
|
||||||
|
|
||||||
print("CAll args and kwargs", args, kwargs)
|
|
||||||
|
|
||||||
# Print the request body
|
|
||||||
|
|
||||||
# You can add more specific assertions here if needed
|
|
||||||
# For example, checking if the URL is correct
|
|
||||||
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
|
||||||
|
|
||||||
body = kwargs["data"]
|
|
||||||
|
|
||||||
# use gzip to unzip the body
|
|
||||||
with gzip.open(io.BytesIO(body), "rb") as f:
|
|
||||||
body = f.read().decode("utf-8")
|
|
||||||
print(body)
|
|
||||||
|
|
||||||
# body is string parse it to dict
|
|
||||||
body = json.loads(body)
|
|
||||||
print(body)
|
|
||||||
|
|
||||||
assert len(body) == 5 # 5 logs should be sent to DataDog
|
|
||||||
|
|
||||||
# Assert that the first element in body has the expected fields and shape
|
|
||||||
assert isinstance(body[0], dict), "First element in body should be a dictionary"
|
|
||||||
|
|
||||||
# Get the expected fields and their types from DatadogPayload
|
|
||||||
expected_fields = DatadogPayload.__annotations__
|
|
||||||
# Assert that all elements in body have the fields of DatadogPayload with correct types
|
|
||||||
for log in body:
|
|
||||||
assert isinstance(log, dict), "Each log should be a dictionary"
|
|
||||||
for field, expected_type in expected_fields.items():
|
|
||||||
assert field in log, f"Field '{field}' is missing from the log"
|
|
||||||
assert isinstance(
|
|
||||||
log[field], expected_type
|
|
||||||
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
|
|
||||||
|
|
||||||
# Additional assertion to ensure no extra fields are present
|
|
||||||
for log in body:
|
|
||||||
assert set(log.keys()) == set(
|
|
||||||
expected_fields.keys()
|
|
||||||
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
|
|
||||||
|
|
||||||
# Parse the 'message' field as JSON and check its structure
|
|
||||||
message = json.loads(body[0]["message"])
|
|
||||||
|
|
||||||
expected_message_fields = [
|
|
||||||
"id",
|
|
||||||
"call_type",
|
|
||||||
"cache_hit",
|
|
||||||
"start_time",
|
|
||||||
"end_time",
|
|
||||||
"response_time",
|
|
||||||
"model",
|
|
||||||
"user",
|
|
||||||
"model_parameters",
|
|
||||||
"spend",
|
|
||||||
"messages",
|
|
||||||
"response",
|
|
||||||
"usage",
|
|
||||||
"metadata",
|
|
||||||
]
|
|
||||||
|
|
||||||
for field in expected_message_fields:
|
|
||||||
assert field in message, f"Field '{field}' is missing from the message"
|
|
||||||
|
|
||||||
# Check specific fields
|
|
||||||
assert message["call_type"] == "acompletion"
|
|
||||||
assert message["model"] == "gpt-3.5-turbo"
|
|
||||||
assert isinstance(message["model_parameters"], dict)
|
|
||||||
assert "temperature" in message["model_parameters"]
|
|
||||||
assert "max_tokens" in message["model_parameters"]
|
|
||||||
assert isinstance(message["response"], dict)
|
|
||||||
assert isinstance(message["usage"], dict)
|
|
||||||
assert isinstance(message["metadata"], dict)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
pytest.fail(f"Test failed with exception: {str(e)}")
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_datadog_log_redis_failures():
|
|
||||||
"""
|
|
||||||
Test that poorly configured Redis is logged as Warning on DataDog
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
from litellm.caching.caching import Cache
|
|
||||||
from litellm.integrations.datadog.datadog import DataDogLogger
|
|
||||||
|
|
||||||
litellm.cache = Cache(
|
|
||||||
type="redis", host="badhost", port="6379", password="badpassword"
|
|
||||||
)
|
|
||||||
|
|
||||||
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
|
||||||
os.environ["DD_API_KEY"] = "anything"
|
|
||||||
dd_logger = DataDogLogger()
|
|
||||||
|
|
||||||
litellm.callbacks = [dd_logger]
|
|
||||||
litellm.service_callback = ["datadog"]
|
|
||||||
|
|
||||||
litellm.set_verbose = True
|
|
||||||
|
|
||||||
# Create a mock for the async_client's post method
|
|
||||||
mock_post = AsyncMock()
|
|
||||||
mock_post.return_value.status_code = 202
|
|
||||||
mock_post.return_value.text = "Accepted"
|
|
||||||
dd_logger.async_client.post = mock_post
|
|
||||||
|
|
||||||
# Make the completion call
|
|
||||||
for _ in range(3):
|
|
||||||
response = await litellm.acompletion(
|
|
||||||
model="gpt-3.5-turbo",
|
|
||||||
messages=[{"role": "user", "content": "what llm are u"}],
|
|
||||||
max_tokens=10,
|
|
||||||
temperature=0.2,
|
|
||||||
mock_response="Accepted",
|
|
||||||
)
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
# Wait for 5 seconds
|
|
||||||
await asyncio.sleep(6)
|
|
||||||
|
|
||||||
# Assert that the mock was called
|
|
||||||
assert mock_post.called, "HTTP request was not made"
|
|
||||||
|
|
||||||
# Get the arguments of the last call
|
|
||||||
args, kwargs = mock_post.call_args
|
|
||||||
print("CAll args and kwargs", args, kwargs)
|
|
||||||
|
|
||||||
# For example, checking if the URL is correct
|
|
||||||
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
|
||||||
|
|
||||||
body = kwargs["data"]
|
|
||||||
|
|
||||||
# use gzip to unzip the body
|
|
||||||
with gzip.open(io.BytesIO(body), "rb") as f:
|
|
||||||
body = f.read().decode("utf-8")
|
|
||||||
print(body)
|
|
||||||
|
|
||||||
# body is string parse it to dict
|
|
||||||
body = json.loads(body)
|
|
||||||
print(body)
|
|
||||||
|
|
||||||
failure_events = [log for log in body if log["status"] == "warning"]
|
|
||||||
assert len(failure_events) > 0, "No failure events logged"
|
|
||||||
|
|
||||||
print("ALL FAILURE/WARN EVENTS", failure_events)
|
|
||||||
|
|
||||||
for event in failure_events:
|
|
||||||
message = json.loads(event["message"])
|
|
||||||
assert (
|
|
||||||
event["status"] == "warning"
|
|
||||||
), f"Event status is not 'warning': {event['status']}"
|
|
||||||
assert (
|
|
||||||
message["service"] == "redis"
|
|
||||||
), f"Service is not 'redis': {message['service']}"
|
|
||||||
assert "error" in message, "No 'error' field in the message"
|
|
||||||
assert message["error"], "Error field is empty"
|
|
||||||
except Exception as e:
|
|
||||||
pytest.fail(f"Test failed with exception: {str(e)}")
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
|
|
||||||
async def test_datadog_logging():
|
|
||||||
try:
|
|
||||||
litellm.success_callback = ["datadog"]
|
|
||||||
litellm.set_verbose = True
|
|
||||||
response = await litellm.acompletion(
|
|
||||||
model="gpt-3.5-turbo",
|
|
||||||
messages=[{"role": "user", "content": "what llm are u"}],
|
|
||||||
max_tokens=10,
|
|
||||||
temperature=0.2,
|
|
||||||
)
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
await asyncio.sleep(5)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
|
@ -17,9 +17,8 @@ import pytest
|
||||||
import litellm
|
import litellm
|
||||||
from litellm import completion
|
from litellm import completion
|
||||||
from litellm._logging import verbose_logger
|
from litellm._logging import verbose_logger
|
||||||
from litellm.integrations.datadog.datadog import DataDogLogger, DataDogStatus
|
from litellm.integrations.datadog.datadog import *
|
||||||
from datetime import datetime, timedelta
|
from datetime import datetime, timedelta
|
||||||
from litellm.types.integrations.datadog_llm_obs import *
|
|
||||||
from litellm.types.utils import (
|
from litellm.types.utils import (
|
||||||
StandardLoggingPayload,
|
StandardLoggingPayload,
|
||||||
StandardLoggingModelInformation,
|
StandardLoggingModelInformation,
|
||||||
|
@ -136,3 +135,212 @@ async def test_datadog_failure_logging():
|
||||||
# verify error_str is in the message field
|
# verify error_str is in the message field
|
||||||
assert "error_str" in dict_payload
|
assert "error_str" in dict_payload
|
||||||
assert dict_payload["error_str"] == "Test error"
|
assert dict_payload["error_str"] == "Test error"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_datadog_logging_http_request():
|
||||||
|
"""
|
||||||
|
- Test that the HTTP request is made to Datadog
|
||||||
|
- sent to the /api/v2/logs endpoint
|
||||||
|
- the payload is batched
|
||||||
|
- each element in the payload is a DatadogPayload
|
||||||
|
- each element in a DatadogPayload.message contains all the valid fields
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from litellm.integrations.datadog.datadog import DataDogLogger
|
||||||
|
|
||||||
|
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
||||||
|
os.environ["DD_API_KEY"] = "anything"
|
||||||
|
dd_logger = DataDogLogger()
|
||||||
|
|
||||||
|
litellm.callbacks = [dd_logger]
|
||||||
|
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
# Create a mock for the async_client's post method
|
||||||
|
mock_post = AsyncMock()
|
||||||
|
mock_post.return_value.status_code = 202
|
||||||
|
mock_post.return_value.text = "Accepted"
|
||||||
|
dd_logger.async_client.post = mock_post
|
||||||
|
|
||||||
|
# Make the completion call
|
||||||
|
for _ in range(5):
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": "what llm are u"}],
|
||||||
|
max_tokens=10,
|
||||||
|
temperature=0.2,
|
||||||
|
mock_response="Accepted",
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
|
||||||
|
# Wait for 5 seconds
|
||||||
|
await asyncio.sleep(6)
|
||||||
|
|
||||||
|
# Assert that the mock was called
|
||||||
|
assert mock_post.called, "HTTP request was not made"
|
||||||
|
|
||||||
|
# Get the arguments of the last call
|
||||||
|
args, kwargs = mock_post.call_args
|
||||||
|
|
||||||
|
print("CAll args and kwargs", args, kwargs)
|
||||||
|
|
||||||
|
# Print the request body
|
||||||
|
|
||||||
|
# You can add more specific assertions here if needed
|
||||||
|
# For example, checking if the URL is correct
|
||||||
|
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
||||||
|
|
||||||
|
body = kwargs["data"]
|
||||||
|
|
||||||
|
# use gzip to unzip the body
|
||||||
|
with gzip.open(io.BytesIO(body), "rb") as f:
|
||||||
|
body = f.read().decode("utf-8")
|
||||||
|
print(body)
|
||||||
|
|
||||||
|
# body is string parse it to dict
|
||||||
|
body = json.loads(body)
|
||||||
|
print(body)
|
||||||
|
|
||||||
|
assert len(body) == 5 # 5 logs should be sent to DataDog
|
||||||
|
|
||||||
|
# Assert that the first element in body has the expected fields and shape
|
||||||
|
assert isinstance(body[0], dict), "First element in body should be a dictionary"
|
||||||
|
|
||||||
|
# Get the expected fields and their types from DatadogPayload
|
||||||
|
expected_fields = DatadogPayload.__annotations__
|
||||||
|
# Assert that all elements in body have the fields of DatadogPayload with correct types
|
||||||
|
for log in body:
|
||||||
|
assert isinstance(log, dict), "Each log should be a dictionary"
|
||||||
|
for field, expected_type in expected_fields.items():
|
||||||
|
assert field in log, f"Field '{field}' is missing from the log"
|
||||||
|
assert isinstance(
|
||||||
|
log[field], expected_type
|
||||||
|
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
|
||||||
|
|
||||||
|
# Additional assertion to ensure no extra fields are present
|
||||||
|
for log in body:
|
||||||
|
assert set(log.keys()) == set(
|
||||||
|
expected_fields.keys()
|
||||||
|
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
|
||||||
|
|
||||||
|
# Parse the 'message' field as JSON and check its structure
|
||||||
|
message = json.loads(body[0]["message"])
|
||||||
|
|
||||||
|
expected_message_fields = StandardLoggingPayload.__annotations__.keys()
|
||||||
|
|
||||||
|
for field in expected_message_fields:
|
||||||
|
assert field in message, f"Field '{field}' is missing from the message"
|
||||||
|
|
||||||
|
# Check specific fields
|
||||||
|
assert message["call_type"] == "acompletion"
|
||||||
|
assert message["model"] == "gpt-3.5-turbo"
|
||||||
|
assert isinstance(message["model_parameters"], dict)
|
||||||
|
assert "temperature" in message["model_parameters"]
|
||||||
|
assert "max_tokens" in message["model_parameters"]
|
||||||
|
assert isinstance(message["response"], dict)
|
||||||
|
assert isinstance(message["metadata"], dict)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Test failed with exception: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_datadog_log_redis_failures():
|
||||||
|
"""
|
||||||
|
Test that poorly configured Redis is logged as Warning on DataDog
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from litellm.caching.caching import Cache
|
||||||
|
from litellm.integrations.datadog.datadog import DataDogLogger
|
||||||
|
|
||||||
|
litellm.cache = Cache(
|
||||||
|
type="redis", host="badhost", port="6379", password="badpassword"
|
||||||
|
)
|
||||||
|
|
||||||
|
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
||||||
|
os.environ["DD_API_KEY"] = "anything"
|
||||||
|
dd_logger = DataDogLogger()
|
||||||
|
|
||||||
|
litellm.callbacks = [dd_logger]
|
||||||
|
litellm.service_callback = ["datadog"]
|
||||||
|
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
# Create a mock for the async_client's post method
|
||||||
|
mock_post = AsyncMock()
|
||||||
|
mock_post.return_value.status_code = 202
|
||||||
|
mock_post.return_value.text = "Accepted"
|
||||||
|
dd_logger.async_client.post = mock_post
|
||||||
|
|
||||||
|
# Make the completion call
|
||||||
|
for _ in range(3):
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": "what llm are u"}],
|
||||||
|
max_tokens=10,
|
||||||
|
temperature=0.2,
|
||||||
|
mock_response="Accepted",
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
|
||||||
|
# Wait for 5 seconds
|
||||||
|
await asyncio.sleep(6)
|
||||||
|
|
||||||
|
# Assert that the mock was called
|
||||||
|
assert mock_post.called, "HTTP request was not made"
|
||||||
|
|
||||||
|
# Get the arguments of the last call
|
||||||
|
args, kwargs = mock_post.call_args
|
||||||
|
print("CAll args and kwargs", args, kwargs)
|
||||||
|
|
||||||
|
# For example, checking if the URL is correct
|
||||||
|
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
||||||
|
|
||||||
|
body = kwargs["data"]
|
||||||
|
|
||||||
|
# use gzip to unzip the body
|
||||||
|
with gzip.open(io.BytesIO(body), "rb") as f:
|
||||||
|
body = f.read().decode("utf-8")
|
||||||
|
print(body)
|
||||||
|
|
||||||
|
# body is string parse it to dict
|
||||||
|
body = json.loads(body)
|
||||||
|
print(body)
|
||||||
|
|
||||||
|
failure_events = [log for log in body if log["status"] == "warning"]
|
||||||
|
assert len(failure_events) > 0, "No failure events logged"
|
||||||
|
|
||||||
|
print("ALL FAILURE/WARN EVENTS", failure_events)
|
||||||
|
|
||||||
|
for event in failure_events:
|
||||||
|
message = json.loads(event["message"])
|
||||||
|
assert (
|
||||||
|
event["status"] == "warning"
|
||||||
|
), f"Event status is not 'warning': {event['status']}"
|
||||||
|
assert (
|
||||||
|
message["service"] == "redis"
|
||||||
|
), f"Service is not 'redis': {message['service']}"
|
||||||
|
assert "error" in message, "No 'error' field in the message"
|
||||||
|
assert message["error"], "Error field is empty"
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Test failed with exception: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
|
||||||
|
async def test_datadog_logging():
|
||||||
|
try:
|
||||||
|
litellm.success_callback = ["datadog"]
|
||||||
|
litellm.set_verbose = True
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": "what llm are u"}],
|
||||||
|
max_tokens=10,
|
||||||
|
temperature=0.2,
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
|
||||||
|
await asyncio.sleep(5)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue