forked from phoenix/litellm-mirror
feat(azure.py): add support for calling whisper endpoints on azure
This commit is contained in:
parent
696eb54455
commit
6b1049217e
3 changed files with 237 additions and 13 deletions
|
@ -7,8 +7,9 @@ from litellm.utils import (
|
||||||
Message,
|
Message,
|
||||||
CustomStreamWrapper,
|
CustomStreamWrapper,
|
||||||
convert_to_model_response_object,
|
convert_to_model_response_object,
|
||||||
|
TranscriptionResponse,
|
||||||
)
|
)
|
||||||
from typing import Callable, Optional
|
from typing import Callable, Optional, BinaryIO
|
||||||
from litellm import OpenAIConfig
|
from litellm import OpenAIConfig
|
||||||
import litellm, json
|
import litellm, json
|
||||||
import httpx
|
import httpx
|
||||||
|
@ -757,6 +758,114 @@ class AzureChatCompletion(BaseLLM):
|
||||||
else:
|
else:
|
||||||
raise AzureOpenAIError(status_code=500, message=str(e))
|
raise AzureOpenAIError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
def audio_transcriptions(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
audio_file: BinaryIO,
|
||||||
|
optional_params: dict,
|
||||||
|
model_response: TranscriptionResponse,
|
||||||
|
timeout: float,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
api_base: Optional[str] = None,
|
||||||
|
api_version: Optional[str] = None,
|
||||||
|
client=None,
|
||||||
|
azure_ad_token: Optional[str] = None,
|
||||||
|
max_retries=None,
|
||||||
|
logging_obj=None,
|
||||||
|
atranscriptions: bool = False,
|
||||||
|
):
|
||||||
|
data = {"model": model, "file": audio_file, **optional_params}
|
||||||
|
|
||||||
|
# init AzureOpenAI Client
|
||||||
|
azure_client_params = {
|
||||||
|
"api_version": api_version,
|
||||||
|
"azure_endpoint": api_base,
|
||||||
|
"azure_deployment": model,
|
||||||
|
"max_retries": max_retries,
|
||||||
|
"timeout": timeout,
|
||||||
|
}
|
||||||
|
azure_client_params = select_azure_base_url_or_endpoint(
|
||||||
|
azure_client_params=azure_client_params
|
||||||
|
)
|
||||||
|
if api_key is not None:
|
||||||
|
azure_client_params["api_key"] = api_key
|
||||||
|
elif azure_ad_token is not None:
|
||||||
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
||||||
|
|
||||||
|
if atranscriptions == True:
|
||||||
|
return self.async_audio_transcriptions(
|
||||||
|
audio_file=audio_file,
|
||||||
|
data=data,
|
||||||
|
model_response=model_response,
|
||||||
|
timeout=timeout,
|
||||||
|
api_key=api_key,
|
||||||
|
api_base=api_base,
|
||||||
|
client=client,
|
||||||
|
azure_client_params=azure_client_params,
|
||||||
|
max_retries=max_retries,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
if client is None:
|
||||||
|
azure_client = AzureOpenAI(http_client=litellm.client_session, **azure_client_params) # type: ignore
|
||||||
|
else:
|
||||||
|
azure_client = client
|
||||||
|
response = azure_client.audio.transcriptions.create(
|
||||||
|
**data, timeout=timeout # type: ignore
|
||||||
|
)
|
||||||
|
stringified_response = response.model_dump()
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=audio_file.name,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
original_response=stringified_response,
|
||||||
|
)
|
||||||
|
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||||
|
return final_response
|
||||||
|
|
||||||
|
async def async_audio_transcriptions(
|
||||||
|
self,
|
||||||
|
audio_file: BinaryIO,
|
||||||
|
data: dict,
|
||||||
|
model_response: TranscriptionResponse,
|
||||||
|
timeout: float,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
api_base: Optional[str] = None,
|
||||||
|
client=None,
|
||||||
|
azure_client_params=None,
|
||||||
|
max_retries=None,
|
||||||
|
logging_obj=None,
|
||||||
|
):
|
||||||
|
response = None
|
||||||
|
try:
|
||||||
|
if client is None:
|
||||||
|
async_azure_client = AsyncAzureOpenAI(
|
||||||
|
**azure_client_params,
|
||||||
|
http_client=litellm.aclient_session,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
async_azure_client = client
|
||||||
|
response = await async_azure_client.audio.transcriptions.create(
|
||||||
|
**data, timeout=timeout
|
||||||
|
) # type: ignore
|
||||||
|
stringified_response = response.model_dump()
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=audio_file.name,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
original_response=stringified_response,
|
||||||
|
)
|
||||||
|
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="image_generation") # type: ignore
|
||||||
|
except Exception as e:
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=input,
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=str(e),
|
||||||
|
)
|
||||||
|
raise e
|
||||||
|
|
||||||
async def ahealth_check(
|
async def ahealth_check(
|
||||||
self,
|
self,
|
||||||
model: Optional[str],
|
model: Optional[str],
|
||||||
|
|
|
@ -88,6 +88,7 @@ from litellm.utils import (
|
||||||
read_config_args,
|
read_config_args,
|
||||||
Choices,
|
Choices,
|
||||||
Message,
|
Message,
|
||||||
|
TranscriptionResponse,
|
||||||
)
|
)
|
||||||
|
|
||||||
####### ENVIRONMENT VARIABLES ###################
|
####### ENVIRONMENT VARIABLES ###################
|
||||||
|
@ -3065,11 +3066,11 @@ async def aimage_generation(*args, **kwargs):
|
||||||
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
|
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
- `args` (tuple): Positional arguments to be passed to the `embedding` function.
|
- `args` (tuple): Positional arguments to be passed to the `image_generation` function.
|
||||||
- `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.
|
- `kwargs` (dict): Keyword arguments to be passed to the `image_generation` function.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
- `response` (Any): The response returned by the `embedding` function.
|
- `response` (Any): The response returned by the `image_generation` function.
|
||||||
"""
|
"""
|
||||||
loop = asyncio.get_event_loop()
|
loop = asyncio.get_event_loop()
|
||||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||||
|
@ -3091,7 +3092,7 @@ async def aimage_generation(*args, **kwargs):
|
||||||
# Await normally
|
# Await normally
|
||||||
init_response = await loop.run_in_executor(None, func_with_context)
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
if isinstance(init_response, dict) or isinstance(
|
if isinstance(init_response, dict) or isinstance(
|
||||||
init_response, ModelResponse
|
init_response, ImageResponse
|
||||||
): ## CACHING SCENARIO
|
): ## CACHING SCENARIO
|
||||||
response = init_response
|
response = init_response
|
||||||
elif asyncio.iscoroutine(init_response):
|
elif asyncio.iscoroutine(init_response):
|
||||||
|
@ -3318,7 +3319,43 @@ async def atranscription(*args, **kwargs):
|
||||||
|
|
||||||
Allows router to load balance between them
|
Allows router to load balance between them
|
||||||
"""
|
"""
|
||||||
pass
|
loop = asyncio.get_event_loop()
|
||||||
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||||
|
### PASS ARGS TO Image Generation ###
|
||||||
|
kwargs["atranscription"] = True
|
||||||
|
custom_llm_provider = None
|
||||||
|
try:
|
||||||
|
# Use a partial function to pass your keyword arguments
|
||||||
|
func = partial(transcription, *args, **kwargs)
|
||||||
|
|
||||||
|
# Add the context to the function
|
||||||
|
ctx = contextvars.copy_context()
|
||||||
|
func_with_context = partial(ctx.run, func)
|
||||||
|
|
||||||
|
_, custom_llm_provider, _, _ = get_llm_provider(
|
||||||
|
model=model, api_base=kwargs.get("api_base", None)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Await normally
|
||||||
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
if isinstance(init_response, dict) or isinstance(
|
||||||
|
init_response, TranscriptionResponse
|
||||||
|
): ## CACHING SCENARIO
|
||||||
|
response = init_response
|
||||||
|
elif asyncio.iscoroutine(init_response):
|
||||||
|
response = await init_response
|
||||||
|
else:
|
||||||
|
# Call the synchronous function using run_in_executor
|
||||||
|
response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
custom_llm_provider = custom_llm_provider or "openai"
|
||||||
|
raise exception_type(
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider=custom_llm_provider,
|
||||||
|
original_exception=e,
|
||||||
|
completion_kwargs=args,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@client
|
@client
|
||||||
|
@ -3356,8 +3393,7 @@ def transcription(
|
||||||
|
|
||||||
model_response = litellm.utils.TranscriptionResponse()
|
model_response = litellm.utils.TranscriptionResponse()
|
||||||
|
|
||||||
# model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
|
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
|
||||||
custom_llm_provider = "openai"
|
|
||||||
|
|
||||||
optional_params = {
|
optional_params = {
|
||||||
"language": language,
|
"language": language,
|
||||||
|
@ -3365,8 +3401,40 @@ def transcription(
|
||||||
"response_format": response_format,
|
"response_format": response_format,
|
||||||
"temperature": None, # openai defaults this to 0
|
"temperature": None, # openai defaults this to 0
|
||||||
}
|
}
|
||||||
if custom_llm_provider == "openai":
|
|
||||||
return openai_chat_completions.audio_transcriptions(
|
if custom_llm_provider == "azure":
|
||||||
|
# azure configs
|
||||||
|
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
|
||||||
|
|
||||||
|
api_version = (
|
||||||
|
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
|
||||||
|
)
|
||||||
|
|
||||||
|
azure_ad_token = kwargs.pop("azure_ad_token", None) or get_secret(
|
||||||
|
"AZURE_AD_TOKEN"
|
||||||
|
)
|
||||||
|
|
||||||
|
api_key = (
|
||||||
|
api_key
|
||||||
|
or litellm.api_key
|
||||||
|
or litellm.azure_key
|
||||||
|
or get_secret("AZURE_API_KEY")
|
||||||
|
)
|
||||||
|
response = azure_chat_completions.audio_transcriptions(
|
||||||
|
model=model,
|
||||||
|
audio_file=file,
|
||||||
|
optional_params=optional_params,
|
||||||
|
model_response=model_response,
|
||||||
|
atranscriptions=atranscriptions,
|
||||||
|
timeout=timeout,
|
||||||
|
logging_obj=litellm_logging_obj,
|
||||||
|
api_base=api_base,
|
||||||
|
api_key=api_key,
|
||||||
|
api_version=api_version,
|
||||||
|
azure_ad_token=azure_ad_token,
|
||||||
|
)
|
||||||
|
elif custom_llm_provider == "openai":
|
||||||
|
response = openai_chat_completions.audio_transcriptions(
|
||||||
model=model,
|
model=model,
|
||||||
audio_file=file,
|
audio_file=file,
|
||||||
optional_params=optional_params,
|
optional_params=optional_params,
|
||||||
|
@ -3375,7 +3443,7 @@ def transcription(
|
||||||
timeout=timeout,
|
timeout=timeout,
|
||||||
logging_obj=litellm_logging_obj,
|
logging_obj=litellm_logging_obj,
|
||||||
)
|
)
|
||||||
return
|
return response
|
||||||
|
|
||||||
|
|
||||||
##### Health Endpoints #######################
|
##### Health Endpoints #######################
|
||||||
|
|
|
@ -19,8 +19,55 @@ import litellm
|
||||||
|
|
||||||
|
|
||||||
def test_transcription():
|
def test_transcription():
|
||||||
transcript = litellm.transcription(model="whisper-1", file=audio_file)
|
transcript = litellm.transcription(
|
||||||
|
model="whisper-1",
|
||||||
|
file=audio_file,
|
||||||
|
)
|
||||||
print(f"transcript: {transcript}")
|
print(f"transcript: {transcript}")
|
||||||
|
|
||||||
|
|
||||||
test_transcription()
|
# test_transcription()
|
||||||
|
|
||||||
|
|
||||||
|
def test_transcription_azure():
|
||||||
|
transcript = litellm.transcription(
|
||||||
|
model="azure/azure-whisper",
|
||||||
|
file=audio_file,
|
||||||
|
api_base=os.getenv("AZURE_EUROPE_API_BASE"),
|
||||||
|
api_key=os.getenv("AZURE_EUROPE_API_KEY"),
|
||||||
|
api_version=os.getenv("2024-02-15-preview"),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert transcript.text is not None
|
||||||
|
assert isinstance(transcript.text, str)
|
||||||
|
|
||||||
|
|
||||||
|
# test_transcription_azure()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_transcription_async_azure():
|
||||||
|
transcript = await litellm.atranscription(
|
||||||
|
model="azure/azure-whisper",
|
||||||
|
file=audio_file,
|
||||||
|
api_base=os.getenv("AZURE_EUROPE_API_BASE"),
|
||||||
|
api_key=os.getenv("AZURE_EUROPE_API_KEY"),
|
||||||
|
api_version=os.getenv("2024-02-15-preview"),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert transcript.text is not None
|
||||||
|
assert isinstance(transcript.text, str)
|
||||||
|
|
||||||
|
|
||||||
|
# asyncio.run(test_transcription_async_azure())
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_transcription_async_openai():
|
||||||
|
transcript = await litellm.atranscription(
|
||||||
|
model="whisper-1",
|
||||||
|
file=audio_file,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert transcript.text is not None
|
||||||
|
assert isinstance(transcript.text, str)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue