forked from phoenix/litellm-mirror
Merge pull request #4845 from BerriAI/litellm_vertex_ai_llama3_1_api
feat(vertex_ai_llama.py): vertex ai llama3.1 api support
This commit is contained in:
commit
6c580ac8dc
9 changed files with 338 additions and 19 deletions
|
@ -357,6 +357,7 @@ vertex_text_models: List = []
|
|||
vertex_code_text_models: List = []
|
||||
vertex_embedding_models: List = []
|
||||
vertex_anthropic_models: List = []
|
||||
vertex_llama3_models: List = []
|
||||
ai21_models: List = []
|
||||
nlp_cloud_models: List = []
|
||||
aleph_alpha_models: List = []
|
||||
|
@ -399,6 +400,9 @@ for key, value in model_cost.items():
|
|||
elif value.get("litellm_provider") == "vertex_ai-anthropic_models":
|
||||
key = key.replace("vertex_ai/", "")
|
||||
vertex_anthropic_models.append(key)
|
||||
elif value.get("litellm_provider") == "vertex_ai-llama_models":
|
||||
key = key.replace("vertex_ai/", "")
|
||||
vertex_llama3_models.append(key)
|
||||
elif value.get("litellm_provider") == "ai21":
|
||||
ai21_models.append(key)
|
||||
elif value.get("litellm_provider") == "nlp_cloud":
|
||||
|
@ -828,6 +832,7 @@ from .llms.petals import PetalsConfig
|
|||
from .llms.vertex_httpx import VertexGeminiConfig, GoogleAIStudioGeminiConfig
|
||||
from .llms.vertex_ai import VertexAIConfig, VertexAITextEmbeddingConfig
|
||||
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||
from .llms.vertex_ai_llama import VertexAILlama3Config
|
||||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.ollama_chat import OllamaChatConfig
|
||||
|
|
203
litellm/llms/vertex_ai_llama.py
Normal file
203
litellm/llms/vertex_ai_llama.py
Normal file
|
@ -0,0 +1,203 @@
|
|||
# What is this?
|
||||
## Handler for calling llama 3.1 API on Vertex AI
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.types.llms.anthropic import (
|
||||
AnthropicMessagesTool,
|
||||
AnthropicMessagesToolChoice,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
from litellm.types.utils import ResponseFormatChunk
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||
|
||||
from .base import BaseLLM
|
||||
from .prompt_templates.factory import (
|
||||
construct_tool_use_system_prompt,
|
||||
contains_tag,
|
||||
custom_prompt,
|
||||
extract_between_tags,
|
||||
parse_xml_params,
|
||||
prompt_factory,
|
||||
response_schema_prompt,
|
||||
)
|
||||
|
||||
|
||||
class VertexAIError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class VertexAILlama3Config:
|
||||
"""
|
||||
Reference:https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama#streaming
|
||||
|
||||
The class `VertexAILlama3Config` provides configuration for the VertexAI's Llama API interface. Below are the parameters:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens,
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key == "max_tokens" and value is None:
|
||||
value = self.max_tokens
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
|
||||
return optional_params
|
||||
|
||||
|
||||
class VertexAILlama3(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def create_vertex_llama3_url(
|
||||
self, vertex_location: str, vertex_project: str
|
||||
) -> str:
|
||||
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/openapi"
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
custom_prompt_dict: dict,
|
||||
headers: Optional[dict],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
client=None,
|
||||
):
|
||||
try:
|
||||
import vertexai
|
||||
from google.cloud import aiplatform
|
||||
|
||||
from litellm.llms.openai import OpenAIChatCompletion
|
||||
from litellm.llms.vertex_httpx import VertexLLM
|
||||
except Exception:
|
||||
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
|
||||
if not (
|
||||
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
||||
):
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
try:
|
||||
|
||||
vertex_httpx_logic = VertexLLM()
|
||||
|
||||
access_token, project_id = vertex_httpx_logic._ensure_access_token(
|
||||
credentials=vertex_credentials, project_id=vertex_project
|
||||
)
|
||||
|
||||
openai_chat_completions = OpenAIChatCompletion()
|
||||
|
||||
## Load Config
|
||||
# config = litellm.VertexAILlama3.get_config()
|
||||
# for k, v in config.items():
|
||||
# if k not in optional_params:
|
||||
# optional_params[k] = v
|
||||
|
||||
## CONSTRUCT API BASE
|
||||
stream: bool = optional_params.get("stream", False) or False
|
||||
|
||||
optional_params["stream"] = stream
|
||||
|
||||
api_base = self.create_vertex_llama3_url(
|
||||
vertex_location=vertex_location or "us-central1",
|
||||
vertex_project=vertex_project or project_id,
|
||||
)
|
||||
|
||||
return openai_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
api_key=access_token,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
|
@ -1189,7 +1189,7 @@ class VertexLLM(BaseLLM):
|
|||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=response.text)
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
|
|
|
@ -120,6 +120,7 @@ from .llms.prompt_templates.factory import (
|
|||
)
|
||||
from .llms.text_completion_codestral import CodestralTextCompletion
|
||||
from .llms.triton import TritonChatCompletion
|
||||
from .llms.vertex_ai_llama import VertexAILlama3
|
||||
from .llms.vertex_httpx import VertexLLM
|
||||
from .llms.watsonx import IBMWatsonXAI
|
||||
from .types.llms.openai import HttpxBinaryResponseContent
|
||||
|
@ -156,6 +157,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
vertex_llama_chat_completion = VertexAILlama3()
|
||||
watsonxai = IBMWatsonXAI()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
@ -2064,7 +2066,26 @@ def completion(
|
|||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
|
||||
elif model.startswith("meta/"):
|
||||
model_response = vertex_llama_chat_completion.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=new_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
vertex_location=vertex_ai_location,
|
||||
vertex_project=vertex_ai_project,
|
||||
vertex_credentials=vertex_credentials,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
headers=headers,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
else:
|
||||
model_response = vertex_ai.completion(
|
||||
model=model,
|
||||
|
@ -2478,28 +2499,25 @@ def completion(
|
|||
return generator
|
||||
|
||||
response = generator
|
||||
|
||||
|
||||
elif custom_llm_provider == "triton":
|
||||
api_base = (
|
||||
litellm.api_base or api_base
|
||||
)
|
||||
api_base = litellm.api_base or api_base
|
||||
model_response = triton_chat_completions.completion(
|
||||
api_base=api_base,
|
||||
timeout=timeout, # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
acompletion=acompletion
|
||||
api_base=api_base,
|
||||
timeout=timeout, # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
acompletion=acompletion,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
return response
|
||||
|
||||
|
||||
|
||||
elif custom_llm_provider == "cloudflare":
|
||||
api_key = (
|
||||
api_key
|
||||
|
|
|
@ -1948,6 +1948,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
|
@ -895,6 +895,52 @@ async def test_gemini_pro_function_calling_httpx(model, sync_mode):
|
|||
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||
|
||||
|
||||
from litellm.tests.test_completion import response_format_tests
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model", ["vertex_ai/meta/llama3-405b-instruct-maas"]
|
||||
) # "vertex_ai",
|
||||
@pytest.mark.parametrize("sync_mode", [True, False]) # "vertex_ai",
|
||||
@pytest.mark.asyncio
|
||||
async def test_llama_3_httpx(model, sync_mode):
|
||||
try:
|
||||
load_vertex_ai_credentials()
|
||||
litellm.set_verbose = True
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
||||
},
|
||||
# User asks for their name and weather in San Francisco
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello, what is your name and can you tell me the weather?",
|
||||
},
|
||||
]
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
}
|
||||
if sync_mode:
|
||||
response = litellm.completion(**data)
|
||||
else:
|
||||
response = await litellm.acompletion(**data)
|
||||
|
||||
response_format_tests(response=response)
|
||||
|
||||
print(f"response: {response}")
|
||||
except litellm.RateLimitError as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
if "429 Quota exceeded" in str(e):
|
||||
pass
|
||||
else:
|
||||
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||
|
||||
|
||||
def vertex_httpx_mock_reject_prompt_post(*args, **kwargs):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
|
|
|
@ -128,6 +128,19 @@ def test_azure_ai_mistral_optional_params():
|
|||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_vertex_ai_llama_3_optional_params():
|
||||
litellm.vertex_llama3_models = ["meta/llama3-405b-instruct-maas"]
|
||||
litellm.drop_params = True
|
||||
optional_params = get_optional_params(
|
||||
model="meta/llama3-405b-instruct-maas",
|
||||
user="John",
|
||||
custom_llm_provider="vertex_ai",
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
)
|
||||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_azure_gpt_optional_params_gpt_vision():
|
||||
# for OpenAI, Azure all extra params need to get passed as extra_body to OpenAI python. We assert we actually set extra_body here
|
||||
optional_params = litellm.utils.get_optional_params(
|
||||
|
|
|
@ -3088,6 +3088,15 @@ def get_optional_params(
|
|||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models:
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = litellm.VertexAILlama3Config().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
## check if unsupported param passed in
|
||||
supported_params = get_supported_openai_params(
|
||||
|
@ -4189,6 +4198,9 @@ def get_supported_openai_params(
|
|||
return litellm.GoogleAIStudioGeminiConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "vertex_ai":
|
||||
if request_type == "chat_completion":
|
||||
if model.startswith("meta/"):
|
||||
return litellm.VertexAILlama3Config().get_supported_openai_params()
|
||||
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
|
@ -5752,10 +5764,12 @@ def convert_to_model_response_object(
|
|||
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
||||
|
||||
if "created" in response_object:
|
||||
model_response_object.created = response_object["created"]
|
||||
model_response_object.created = response_object["created"] or int(
|
||||
time.time()
|
||||
)
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
model_response_object.id = response_object["id"] or str(uuid.uuid4())
|
||||
|
||||
if "system_fingerprint" in response_object:
|
||||
model_response_object.system_fingerprint = response_object[
|
||||
|
|
|
@ -1948,6 +1948,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue