Merge branch 'main' into ui_show_spend_end_user

This commit is contained in:
Ishaan Jaff 2024-05-08 18:29:25 -07:00 committed by GitHub
commit 6d955ef457
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
101 changed files with 912 additions and 366 deletions

View file

@ -30,7 +30,7 @@ sys.path.insert(
try:
import fastapi
import backoff
import yaml
import yaml # type: ignore
import orjson
import logging
from apscheduler.schedulers.asyncio import AsyncIOScheduler
@ -2516,20 +2516,24 @@ class ProxyConfig:
router = litellm.Router(**router_params) # type:ignore
return router, model_list, general_settings
def get_model_info_with_id(self, model) -> RouterModelInfo:
def get_model_info_with_id(self, model, db_model=False) -> RouterModelInfo:
"""
Common logic across add + delete router models
Parameters:
- deployment
- db_model -> flag for differentiating model stored in db vs. config -> used on UI
Return model info w/ id
"""
if model.model_info is not None and isinstance(model.model_info, dict):
if "id" not in model.model_info:
model.model_info["id"] = model.model_id
if "db_model" in model.model_info and model.model_info["db_model"] == False:
model.model_info["db_model"] = db_model
_model_info = RouterModelInfo(**model.model_info)
else:
_model_info = RouterModelInfo(id=model.model_id)
_model_info = RouterModelInfo(id=model.model_id, db_model=db_model)
return _model_info
async def _delete_deployment(self, db_models: list) -> int:
@ -2612,7 +2616,13 @@ class ProxyConfig:
for k, v in _litellm_params.items():
if isinstance(v, str):
# decode base64
decoded_b64 = base64.b64decode(v)
try:
decoded_b64 = base64.b64decode(v)
except Exception as e:
verbose_proxy_logger.error(
"Error decoding value - {}".format(v)
)
continue
# decrypt value
_value = decrypt_value(value=decoded_b64, master_key=master_key)
# sanity check if string > size 0
@ -2624,9 +2634,11 @@ class ProxyConfig:
f"Invalid model added to proxy db. Invalid litellm params. litellm_params={_litellm_params}"
)
continue # skip to next model
_model_info = self.get_model_info_with_id(model=m)
_model_info = self.get_model_info_with_id(
model=m, db_model=True
) ## 👈 FLAG = True for db_models
added = llm_router.add_deployment(
added = llm_router.upsert_deployment(
deployment=Deployment(
model_name=m.model_name,
litellm_params=_litellm_params,
@ -3487,6 +3499,11 @@ def model_list(
dependencies=[Depends(user_api_key_auth)],
tags=["chat/completions"],
)
@router.post(
"/engines/{model:path}/chat/completions",
dependencies=[Depends(user_api_key_auth)],
tags=["chat/completions"],
)
@router.post(
"/openai/deployments/{model:path}/chat/completions",
dependencies=[Depends(user_api_key_auth)],
@ -3702,6 +3719,7 @@ async def chat_completion(
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": api_base,
"x-litellm-version": version,
}
selected_data_generator = select_data_generator(
response=response,
@ -3717,6 +3735,7 @@ async def chat_completion(
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
### CALL HOOKS ### - modify outgoing data
response = await proxy_logging_obj.post_call_success_hook(
@ -3873,14 +3892,10 @@ async def completion(
},
)
if hasattr(response, "_hidden_params"):
model_id = response._hidden_params.get("model_id", None) or ""
original_response = (
response._hidden_params.get("original_response", None) or ""
)
else:
model_id = ""
original_response = ""
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
verbose_proxy_logger.debug("final response: %s", response)
if (
@ -3888,6 +3903,9 @@ async def completion(
): # use generate_responses to stream responses
custom_headers = {
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": api_base,
"x-litellm-version": version,
}
selected_data_generator = select_data_generator(
response=response,
@ -3902,6 +3920,10 @@ async def completion(
)
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -3941,6 +3963,7 @@ async def completion(
) # azure compatible endpoint
async def embeddings(
request: Request,
fastapi_response: Response,
model: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
@ -4087,6 +4110,17 @@ async def embeddings(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4125,6 +4159,7 @@ async def embeddings(
)
async def image_generation(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
global proxy_logging_obj
@ -4244,6 +4279,17 @@ async def image_generation(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4280,6 +4326,7 @@ async def image_generation(
)
async def audio_transcriptions(
request: Request,
fastapi_response: Response,
file: UploadFile = File(...),
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
@ -4424,6 +4471,18 @@ async def audio_transcriptions(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4463,6 +4522,7 @@ async def audio_transcriptions(
)
async def moderations(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
@ -4587,6 +4647,17 @@ async def moderations(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -7452,6 +7523,16 @@ async def update_model(
)
)
if _existing_litellm_params is None:
if (
llm_router is not None
and llm_router.get_deployment(model_id=_model_id) is not None
):
raise HTTPException(
status_code=400,
detail={
"error": "Can't edit model. Model in config. Store model in db via `/model/new`. to edit."
},
)
raise Exception("model not found")
_existing_litellm_params_dict = dict(
_existing_litellm_params.litellm_params
@ -7464,18 +7545,39 @@ async def update_model(
exclude_none=True
)
for key, value in _existing_litellm_params_dict.items():
if key in _new_litellm_params_dict:
_existing_litellm_params_dict[key] = _new_litellm_params_dict[key]
### ENCRYPT PARAMS ###
for k, v in _new_litellm_params_dict.items():
if isinstance(v, str):
encrypted_value = encrypt_value(value=v, master_key=master_key) # type: ignore
model_params.litellm_params[k] = base64.b64encode(
encrypted_value
).decode("utf-8")
### MERGE WITH EXISTING DATA ###
merged_dictionary = {}
_mp = model_params.litellm_params.dict()
for key, value in _mp.items():
if value is not None:
merged_dictionary[key] = value
elif (
key in _existing_litellm_params_dict
and _existing_litellm_params_dict[key] is not None
):
merged_dictionary[key] = _existing_litellm_params_dict[key]
else:
pass
_data: dict = {
"litellm_params": json.dumps(_existing_litellm_params_dict), # type: ignore
"litellm_params": json.dumps(merged_dictionary), # type: ignore
"updated_by": user_api_key_dict.user_id or litellm_proxy_admin_name,
}
model_response = await prisma_client.db.litellm_proxymodeltable.update(
where={"model_id": _model_id},
data=_data, # type: ignore
)
return model_response
except Exception as e:
traceback.print_exc()
if isinstance(e, HTTPException):