Added support for IBM watsonx.ai models

This commit is contained in:
Simon Sanchez Viloria 2024-04-20 19:56:20 +02:00
parent e52e4cc1a9
commit 6edb133733
5 changed files with 638 additions and 0 deletions

View file

@ -298,6 +298,7 @@ aleph_alpha_models: List = []
bedrock_models: List = []
deepinfra_models: List = []
perplexity_models: List = []
watsonx_models: List = []
for key, value in model_cost.items():
if value.get("litellm_provider") == "openai":
open_ai_chat_completion_models.append(key)
@ -342,6 +343,8 @@ for key, value in model_cost.items():
deepinfra_models.append(key)
elif value.get("litellm_provider") == "perplexity":
perplexity_models.append(key)
elif value.get("litellm_provider") == "watsonx":
watsonx_models.append(key)
# known openai compatible endpoints - we'll eventually move this list to the model_prices_and_context_window.json dictionary
openai_compatible_endpoints: List = [
@ -478,6 +481,7 @@ model_list = (
+ perplexity_models
+ maritalk_models
+ vertex_language_models
+ watsonx_models
)
provider_list: List = [
@ -516,6 +520,7 @@ provider_list: List = [
"cloudflare",
"xinference",
"fireworks_ai",
"watsonx",
"custom", # custom apis
]
@ -537,6 +542,7 @@ models_by_provider: dict = {
"deepinfra": deepinfra_models,
"perplexity": perplexity_models,
"maritalk": maritalk_models,
"watsonx": watsonx_models,
}
# mapping for those models which have larger equivalents
@ -650,6 +656,7 @@ from .llms.bedrock import (
)
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig
from .llms.azure import AzureOpenAIConfig, AzureOpenAIError
from .llms.watsonx import IBMWatsonXConfig
from .main import * # type: ignore
from .integrations import *
from .exceptions import (

View file

@ -416,6 +416,32 @@ def format_prompt_togetherai(messages, prompt_format, chat_template):
prompt = default_pt(messages)
return prompt
### IBM Granite
def ibm_granite_pt(messages: list):
"""
IBM's Granite models uses the template:
<|system|> {system_message} <|user|> {user_message} <|assistant|> {assistant_message}
See: https://www.ibm.com/docs/en/watsonx-as-a-service?topic=solutions-supported-foundation-models
"""
return custom_prompt(
messages=messages,
role_dict={
'system': {
'pre_message': '<|system|>\n',
'post_message': '\n',
},
'user': {
'pre_message': '<|user|>\n',
'post_message': '\n',
},
'assistant': {
'pre_message': '<|assistant|>\n',
'post_message': '\n',
}
}
).strip()
### ANTHROPIC ###
@ -1327,6 +1353,24 @@ def prompt_factory(
return messages
elif custom_llm_provider == "azure_text":
return azure_text_pt(messages=messages)
elif custom_llm_provider == "watsonx":
if "granite" in model and "chat" in model:
# granite-13b-chat-v1 and granite-13b-chat-v2 use a specific prompt template
return ibm_granite_pt(messages=messages)
elif "ibm-mistral" in model:
# models like ibm-mistral/mixtral-8x7b-instruct-v01-q use the mistral instruct prompt template
return mistral_instruct_pt(messages=messages)
elif "meta-llama/llama-3" in model and "instruct" in model:
return custom_prompt(
role_dict={
"system": {"pre_message": "<|start_header_id|>system<|end_header_id|>\n", "post_message": "<|eot_id|>"},
"user": {"pre_message": "<|start_header_id|>user<|end_header_id|>\n", "post_message": "<|eot_id|>"},
"assistant": {"pre_message": "<|start_header_id|>assistant<|end_header_id|>\n", "post_message": "<|eot_id|>"},
},
messages=messages,
initial_prompt_value="<|begin_of_text|>",
# final_prompt_value="\n",
)
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)

480
litellm/llms/watsonx.py Normal file
View file

@ -0,0 +1,480 @@
import json, types, time
from typing import Callable, Optional, Any, Union, List
import httpx
import litellm
from litellm.utils import ModelResponse, get_secret, Usage, ImageResponse
from .prompt_templates import factory as ptf
class WatsonxError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://https://us-south.ml.cloud.ibm.com"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class IBMWatsonXConfig:
"""
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#deployments-text-generation
(See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params)
Supported params for all available watsonx.ai foundational models.
- `decoding_method` (str): One of "greedy" or "sample"
- `temperature` (float): Sets the model temperature for sampling - not available when decoding_method='greedy'.
- `max_new_tokens` (integer): Maximum length of the generated tokens.
- `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated.
- `stop_sequences` (string[]): list of strings to use as stop sequences.
- `time_limit` (integer): time limit in milliseconds. If the generation is not completed within the time limit, the model will return the generated text up to that point.
- `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
- `top_k` (integer): top k for sampling - not available when decoding_method='greedy'.
- `repetition_penalty` (float): token repetition penalty during text generation.
- `stream` (bool): If True, the model will return a stream of responses.
- `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks".
- `truncate_input_tokens` (integer): Truncate input tokens to this length.
- `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
- `random_seed` (integer): Random seed for text generation.
- `guardrails` (bool): Enable guardrails for harmful content.
- `guardrails_hap_params` (dict): Guardrails for harmful content.
- `guardrails_pii_params` (dict): Guardrails for Personally Identifiable Information.
- `concurrency_limit` (integer): Maximum number of concurrent requests.
- `async_mode` (bool): Enable async mode.
- `verify` (bool): Verify the SSL certificate of calls to the watsonx url.
- `validate` (bool): Validate the model_id at initialization.
- `model_inference` (ibm_watsonx_ai.ModelInference): An instance of an ibm_watsonx_ai.ModelInference class to use instead of creating a new model instance.
- `watsonx_client` (ibm_watsonx_ai.APIClient): An instance of an ibm_watsonx_ai.APIClient class to initialize the watsonx model with.
"""
decoding_method: Optional[str] = "sample" # 'sample' or 'greedy'. "sample" follows the default openai API behavior
temperature: Optional[float] = None #
min_new_tokens: Optional[int] = None
max_new_tokens: Optional[int] = litellm.max_tokens
top_k: Optional[int] = None
top_p: Optional[float] = None
random_seed: Optional[int] = None # e.g 42
repetition_penalty: Optional[float] = None
stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."]
time_limit: Optional[int] = None # e.g 10000 (timeout in milliseconds)
return_options: Optional[dict] = None # e.g {"input_text": True, "generated_tokens": True, "input_tokens": True, "token_ranks": False}
truncate_input_tokens: Optional[int] = None # e.g 512
length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5}
stream: Optional[bool] = False
# other inference params
guardrails: Optional[bool] = False # enable guardrails
guardrails_hap_params: Optional[dict] = None # guardrails for harmful content
guardrails_pii_params: Optional[dict] = None # guardrails for Personally Identifiable Information
concurrency_limit: Optional[int] = 10 # max number of concurrent requests
async_mode: Optional[bool] = False # enable async mode
verify: Optional[Union[bool,str]] = None # verify the SSL certificate of calls to the watsonx url
validate: Optional[bool] = False # validate the model_id at initialization
model_inference: Optional[object] = None # an instance of an ibm_watsonx_ai.ModelInference class to use instead of creating a new model instance
watsonx_client: Optional[object] = None # an instance of an ibm_watsonx_ai.APIClient class to initialize the watsonx model with
def __init__(
self,
decoding_method: Optional[str] = None,
temperature: Optional[float] = None,
min_new_tokens: Optional[int] = None,
max_new_tokens: Optional[
int
] = litellm.max_tokens, # petals requires max tokens to be set
top_k: Optional[int] = None,
top_p: Optional[float] = None,
random_seed: Optional[int] = None,
repetition_penalty: Optional[float] = None,
stop_sequences: Optional[List[str]] = None,
time_limit: Optional[int] = None,
return_options: Optional[dict] = None,
truncate_input_tokens: Optional[int] = None,
length_penalty: Optional[dict] = None,
stream: Optional[bool] = False,
guardrails: Optional[bool] = False,
guardrails_hap_params: Optional[dict] = None,
guardrails_pii_params: Optional[dict] = None,
concurrency_limit: Optional[int] = 10,
async_mode: Optional[bool] = False,
verify: Optional[Union[bool,str]] = None,
validate: Optional[bool] = False,
model_inference: Optional[object] = None,
watsonx_client: Optional[object] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
]
def init_watsonx_model(
model_id: str,
url: Optional[str] = None,
api_key: Optional[str] = None,
project_id: Optional[str] = None,
space_id: Optional[str] = None,
wx_credentials: Optional[dict] = None,
region_name: Optional[str] = None,
verify: Optional[Union[bool,str]] = None,
validate: Optional[bool] = False,
watsonx_client: Optional[object] = None,
model_params: Optional[dict] = None,
):
"""
Initialize a watsonx.ai model for inference.
Args:
model_id (str): The model ID to use for inference. If this is a model deployed in a deployment space, the model_id should be in the format 'deployment/<deployment_id>' and the space_id to the deploymend space should be provided.
url (str): The URL of the watsonx.ai instance.
api_key (str): The API key for the watsonx.ai instance.
project_id (str): The project ID for the watsonx.ai instance.
space_id (str): The space ID for the deployment space.
wx_credentials (dict): A dictionary containing 'apikey' and 'url' keys for the watsonx.ai instance.
region_name (str): The region name for the watsonx.ai instance (e.g. 'us-south').
verify (bool): Whether to verify the SSL certificate of calls to the watsonx url.
validate (bool): Whether to validate the model_id at initialization.
watsonx_client (object): An instance of the ibm_watsonx_ai.APIClient class. If this is provided, the model will be initialized using the provided client.
model_params (dict): A dictionary containing additional parameters to pass to the model (see IBMWatsonXConfig for a list of supported parameters).
"""
from ibm_watsonx_ai import APIClient
from ibm_watsonx_ai.foundation_models import ModelInference
if wx_credentials is not None:
if 'apikey' not in wx_credentials and 'api_key' in wx_credentials:
wx_credentials['apikey'] = wx_credentials.pop('api_key')
if 'apikey' not in wx_credentials:
raise WatsonxError(500, "Error: key 'apikey' expected in wx_credentials")
if url is None:
url = get_secret("WX_URL") or get_secret("WATSONX_URL") or get_secret("WML_URL")
if api_key is None:
api_key = get_secret("WX_API_KEY") or get_secret("WML_API_KEY")
if project_id is None:
project_id = get_secret("WX_PROJECT_ID") or get_secret("PROJECT_ID")
if region_name is None:
region_name = get_secret("WML_REGION_NAME") or get_secret("WX_REGION_NAME") or get_secret("REGION_NAME")
if space_id is None:
space_id = get_secret("WX_SPACE_ID") or get_secret("WML_DEPLOYMENT_SPACE_ID") or get_secret("SPACE_ID")
## CHECK IS 'os.environ/' passed in
# Define the list of parameters to check
params_to_check = (url, api_key, project_id, space_id, region_name)
# Iterate over parameters and update if needed
for i, param in enumerate(params_to_check):
if param and param.startswith("os.environ/"):
params_to_check[i] = get_secret(param)
# Assign updated values back to parameters
url, api_key, project_id, space_id, region_name = params_to_check
### SET WATSONX URL
if url is not None or watsonx_client is not None or wx_credentials is not None:
pass
elif region_name is not None:
url = f"https://{region_name}.ml.cloud.ibm.com"
else:
raise WatsonxError(
message="Watsonx URL not set: set WX_URL env variable or in .env file",
status_code=401,
)
if watsonx_client is not None and project_id is None:
project_id = watsonx_client.project_id
if model_id.startswith("deployment/"):
# deployment models are passed in as 'deployment/<deployment_id>'
assert space_id is not None, "space_id is required for deployment models"
deployment_id = '/'.join(model_id.split("/")[1:])
model_id = None
else:
deployment_id = None
if watsonx_client is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
api_client=watsonx_client,
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
elif wx_credentials is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
credentials=wx_credentials,
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
elif api_key is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
credentials={
"apikey": api_key,
"url": url,
},
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
else:
raise WatsonxError(500, "WatsonX credentials not passed or could not be found.")
return model
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
# handle anthropic prompts and amazon titan prompts
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_dict = custom_prompt_dict[model]
prompt = ptf.custom_prompt(
messages=messages,
role_dict=model_prompt_dict.get("role_dict", model_prompt_dict.get("roles")),
initial_prompt_value=model_prompt_dict.get("initial_prompt_value",""),
final_prompt_value=model_prompt_dict.get("final_prompt_value", ""),
bos_token=model_prompt_dict.get("bos_token", ""),
eos_token=model_prompt_dict.get("eos_token", ""),
)
return prompt
elif provider == "ibm":
prompt = ptf.prompt_factory(
model=model, messages=messages, custom_llm_provider="watsonx"
)
elif provider == "ibm-mistralai":
prompt = ptf.mistral_instruct_pt(messages=messages)
else:
prompt = ptf.prompt_factory(model=model, messages=messages, custom_llm_provider='watsonx')
return prompt
"""
IBM watsonx.ai AUTH Keys/Vars
os.environ['WX_URL'] = ""
os.environ['WX_API_KEY'] = ""
os.environ['WX_PROJECT_ID'] = ""
"""
def completion(
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params:Optional[dict]=None,
litellm_params:Optional[dict]=None,
logger_fn=None,
timeout:float=None,
):
from ibm_watsonx_ai.foundation_models import Model, ModelInference
try:
stream = optional_params.pop("stream", False)
extra_generate_params = dict(
guardrails=optional_params.pop("guardrails", False),
guardrails_hap_params=optional_params.pop("guardrails_hap_params", None),
guardrails_pii_params=optional_params.pop("guardrails_pii_params", None),
concurrency_limit=optional_params.pop("concurrency_limit", 10),
async_mode=optional_params.pop("async_mode", False),
)
if timeout is not None and optional_params.get("time_limit") is None:
# the time_limit in watsonx.ai is in milliseconds (as opposed to OpenAI which is in seconds)
optional_params['time_limit'] = max(0, int(timeout*1000))
extra_body_params = optional_params.pop("extra_body", {})
optional_params.update(extra_body_params)
# LOAD CONFIG
config = IBMWatsonXConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
model_inference = optional_params.pop("model_inference", None)
if model_inference is None:
# INIT MODEL
model_client:ModelInference = init_watsonx_model(
model_id=model,
url=optional_params.pop("url", None),
api_key=optional_params.pop("api_key", None),
project_id=optional_params.pop("project_id", None),
space_id=optional_params.pop("space_id", None),
wx_credentials=optional_params.pop("wx_credentials", None),
region_name=optional_params.pop("region_name", None),
verify=optional_params.pop("verify", None),
validate=optional_params.pop("validate", False),
watsonx_client=optional_params.pop("watsonx_client", None),
model_params=optional_params,
)
else:
model_client:ModelInference = model_inference
model = model_client.model_id
# MAKE PROMPT
provider = model.split("/")[0]
model_name = '/'.join(model.split("/")[1:])
prompt = convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
## COMPLETION CALL
if stream is True:
request_str = (
"response = model.generate_text_stream(\n"
f"\tprompt={prompt},\n"
"\traw_response=True\n)"
)
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
# remove params that are not needed for streaming
del extra_generate_params["async_mode"]
del extra_generate_params["concurrency_limit"]
# make generate call
response = model_client.generate_text_stream(
prompt=prompt,
raw_response=True,
**extra_generate_params
)
return litellm.CustomStreamWrapper(
response,
model=model,
custom_llm_provider="watsonx",
logging_obj=logging_obj,
)
else:
try:
## LOGGING
request_str = (
"response = model.generate(\n"
f"\tprompt={prompt},\n"
"\traw_response=True\n)"
)
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = model_client.generate(
prompt=prompt,
**extra_generate_params
)
except Exception as e:
raise WatsonxError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=json.dumps(response),
additional_args={"complete_input_dict": optional_params},
)
print_verbose(f"raw model_response: {response}")
## BUILD RESPONSE OBJECT
output_text = response['results'][0]['generated_text']
try:
if (
len(output_text) > 0
and hasattr(model_response.choices[0], "message")
):
model_response["choices"][0]["message"]["content"] = output_text
model_response["finish_reason"] = response['results'][0]['stop_reason']
prompt_tokens = response['results'][0]['input_token_count']
completion_tokens = response['results'][0]['generated_token_count']
else:
raise Exception()
except:
raise WatsonxError(
message=json.dumps(output_text),
status_code=500,
)
model_response['created'] = int(time.time())
model_response['model'] = model_name
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
except WatsonxError as e:
raise e
except Exception as e:
raise WatsonxError(status_code=500, message=str(e))
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -63,6 +63,7 @@ from .llms import (
vertex_ai,
vertex_ai_anthropic,
maritalk,
watsonx,
)
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
from .llms.azure import AzureChatCompletion
@ -1858,6 +1859,43 @@ def completion(
## RESPONSE OBJECT
response = response
elif custom_llm_provider == "watsonx":
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
response = watsonx.completion(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding,
logging_obj=logging,
timeout=timeout,
)
if (
"stream" in optional_params
and optional_params["stream"] == True
and not isinstance(response, CustomStreamWrapper)
):
# don't try to access stream object,
response = CustomStreamWrapper(
iter(response),
model,
custom_llm_provider="watsonx",
logging_obj=logging,
)
if optional_params.get("stream", False):
## LOGGING
logging.post_call(
input=messages,
api_key=None,
original_response=response,
)
## RESPONSE OBJECT
response = response
elif custom_llm_provider == "vllm":
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
model_response = vllm.completion(

View file

@ -5331,6 +5331,45 @@ def get_optional_params(
optional_params["extra_body"] = (
extra_body # openai client supports `extra_body` param
)
elif custom_llm_provider == "watsonx":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["max_new_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if frequency_penalty is not None:
optional_params["repetition_penalty"] = frequency_penalty
if seed is not None:
optional_params["random_seed"] = seed
if stop is not None:
optional_params["stop_sequences"] = stop
# WatsonX-only parameters
extra_body = {}
if "decoding_method" in passed_params:
extra_body["decoding_method"] = passed_params.pop("decoding_method")
if "min_tokens" in passed_params or "min_new_tokens" in passed_params:
extra_body["min_new_tokens"] = passed_params.pop("min_tokens", passed_params.pop("min_new_tokens"))
if "top_k" in passed_params:
extra_body["top_k"] = passed_params.pop("top_k")
if "truncate_input_tokens" in passed_params:
extra_body["truncate_input_tokens"] = passed_params.pop("truncate_input_tokens")
if "length_penalty" in passed_params:
extra_body["length_penalty"] = passed_params.pop("length_penalty")
if "time_limit" in passed_params:
extra_body["time_limit"] = passed_params.pop("time_limit")
if "return_options" in passed_params:
extra_body["return_options"] = passed_params.pop("return_options")
optional_params["extra_body"] = (
extra_body # openai client supports `extra_body` param
)
else: # assume passing in params for openai/azure openai
print_verbose(
f"UNMAPPED PROVIDER, ASSUMING IT'S OPENAI/AZURE - model={model}, custom_llm_provider={custom_llm_provider}"
@ -5688,6 +5727,8 @@ def get_supported_openai_params(model: str, custom_llm_provider: str):
"frequency_penalty",
"presence_penalty",
]
elif custom_llm_provider == "watsonx":
return litellm.IBMWatsonXConfig().get_supported_openai_params()
def get_formatted_prompt(
@ -5914,6 +5955,8 @@ def get_llm_provider(
model in litellm.bedrock_models or model in litellm.bedrock_embedding_models
):
custom_llm_provider = "bedrock"
elif model in litellm.watsonx_models:
custom_llm_provider = "watsonx"
# openai embeddings
elif model in litellm.open_ai_embedding_models:
custom_llm_provider = "openai"
@ -9590,6 +9633,26 @@ class CustomStreamWrapper:
"is_finished": chunk["is_finished"],
"finish_reason": finish_reason,
}
def handle_watsonx_stream(self, chunk):
try:
if isinstance(chunk, dict):
pass
elif isinstance(chunk, str):
chunk = json.loads(chunk)
result = chunk.get("results", [])
if len(result) > 0:
text = result[0].get("generated_text", "")
finish_reason = result[0].get("stop_reason")
is_finished = finish_reason != 'not_finished'
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
}
return ""
except Exception as e:
raise e
def model_response_creator(self):
model_response = ModelResponse(stream=True, model=self.model)
@ -9845,6 +9908,12 @@ class CustomStreamWrapper:
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "watsonx":
response_obj = self.handle_watsonx_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "text-completion-openai":
response_obj = self.handle_openai_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]