feat - watsonx refractoring, removed dependency, and added support for embedding calls

This commit is contained in:
Simon Sanchez Viloria 2024-04-23 11:53:38 +02:00
parent a77537ddd4
commit 74d2ba0a23
4 changed files with 477 additions and 366 deletions

View file

@ -656,7 +656,7 @@ from .llms.bedrock import (
)
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig
from .llms.azure import AzureOpenAIConfig, AzureOpenAIError
from .llms.watsonx import IBMWatsonXConfig
from .llms.watsonx import IBMWatsonXAIConfig
from .main import * # type: ignore
from .integrations import *
from .exceptions import (

View file

@ -1,27 +1,31 @@
import json, types, time
from typing import Callable, Optional, Any, Union, List
import json, types, time # noqa: E401
from contextlib import contextmanager
from typing import Callable, Dict, Optional, Any, Union, List
import httpx
import requests
import litellm
from litellm.utils import ModelResponse, get_secret, Usage, ImageResponse
from litellm.utils import ModelResponse, get_secret, Usage
from .base import BaseLLM
from .prompt_templates import factory as ptf
class WatsonxError(Exception):
def __init__(self, status_code, message):
class WatsonXAIError(Exception):
def __init__(self, status_code, message, url: str = None):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://https://us-south.ml.cloud.ibm.com"
)
url = url or "https://https://us-south.ml.cloud.ibm.com"
self.request = httpx.Request(method="POST", url=url)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class IBMWatsonXConfig:
class IBMWatsonXAIConfig:
"""
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#deployments-text-generation
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation
(See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params)
Supported params for all available watsonx.ai foundational models.
@ -34,96 +38,64 @@ class IBMWatsonXConfig:
- `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated.
- `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
- `stop_sequences` (string[]): list of strings to use as stop sequences.
- `time_limit` (integer): time limit in milliseconds. If the generation is not completed within the time limit, the model will return the generated text up to that point.
- `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
- `top_k` (integer): top k for sampling - not available when decoding_method='greedy'.
- `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
- `repetition_penalty` (float): token repetition penalty during text generation.
- `stream` (bool): If True, the model will return a stream of responses.
- `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks".
- `truncate_input_tokens` (integer): Truncate input tokens to this length.
- `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
- `include_stop_sequences` (bool): If True, the stop sequence will be included at the end of the generated text in the case of a match.
- `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks". Values are boolean.
- `random_seed` (integer): Random seed for text generation.
- `guardrails` (bool): Enable guardrails for harmful content.
- `moderations` (dict): Dictionary of properties that control the moderations, for usages such as Hate and profanity (HAP) and PII filtering.
- `guardrails_hap_params` (dict): Guardrails for harmful content.
- `guardrails_pii_params` (dict): Guardrails for Personally Identifiable Information.
- `concurrency_limit` (integer): Maximum number of concurrent requests.
- `async_mode` (bool): Enable async mode.
- `verify` (bool): Verify the SSL certificate of calls to the watsonx url.
- `validate` (bool): Validate the model_id at initialization.
- `model_inference` (ibm_watsonx_ai.ModelInference): An instance of an ibm_watsonx_ai.ModelInference class to use instead of creating a new model instance.
- `watsonx_client` (ibm_watsonx_ai.APIClient): An instance of an ibm_watsonx_ai.APIClient class to initialize the watsonx model with.
- `stream` (bool): If True, the model will return a stream of responses.
"""
decoding_method: Optional[str] = "sample" # 'sample' or 'greedy'. "sample" follows the default openai API behavior
temperature: Optional[float] = None #
decoding_method: Optional[str] = "sample"
temperature: Optional[float] = None
max_new_tokens: Optional[int] = None # litellm.max_tokens
min_new_tokens: Optional[int] = None
max_new_tokens: Optional[int] = litellm.max_tokens
length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5}
stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."]
top_k: Optional[int] = None
top_p: Optional[float] = None
random_seed: Optional[int] = None # e.g 42
repetition_penalty: Optional[float] = None
stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."]
time_limit: Optional[int] = None # e.g 10000 (timeout in milliseconds)
return_options: Optional[dict] = None # e.g {"input_text": True, "generated_tokens": True, "input_tokens": True, "token_ranks": False}
truncate_input_tokens: Optional[int] = None # e.g 512
length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5}
truncate_input_tokens: Optional[int] = None
include_stop_sequences: Optional[bool] = False
return_options: Optional[dict] = None
return_options: Optional[Dict[str, bool]] = None
random_seed: Optional[int] = None # e.g 42
moderations: Optional[dict] = None
stream: Optional[bool] = False
# other inference params
guardrails: Optional[bool] = False # enable guardrails
guardrails_hap_params: Optional[dict] = None # guardrails for harmful content
guardrails_pii_params: Optional[dict] = None # guardrails for Personally Identifiable Information
concurrency_limit: Optional[int] = 10 # max number of concurrent requests
async_mode: Optional[bool] = False # enable async mode
verify: Optional[Union[bool,str]] = None # verify the SSL certificate of calls to the watsonx url
validate: Optional[bool] = False # validate the model_id at initialization
model_inference: Optional[object] = None # an instance of an ibm_watsonx_ai.ModelInference class to use instead of creating a new model instance
watsonx_client: Optional[object] = None # an instance of an ibm_watsonx_ai.APIClient class to initialize the watsonx model with
def __init__(
self,
decoding_method: Optional[str] = None,
temperature: Optional[float] = None,
max_new_tokens: Optional[int] = None,
min_new_tokens: Optional[int] = None,
max_new_tokens: Optional[
int
] = litellm.max_tokens, # petals requires max tokens to be set
length_penalty: Optional[dict] = None,
stop_sequences: Optional[List[str]] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
random_seed: Optional[int] = None,
repetition_penalty: Optional[float] = None,
stop_sequences: Optional[List[str]] = None,
time_limit: Optional[int] = None,
return_options: Optional[dict] = None,
truncate_input_tokens: Optional[int] = None,
length_penalty: Optional[dict] = None,
stream: Optional[bool] = False,
guardrails: Optional[bool] = False,
guardrails_hap_params: Optional[dict] = None,
guardrails_pii_params: Optional[dict] = None,
concurrency_limit: Optional[int] = 10,
async_mode: Optional[bool] = False,
verify: Optional[Union[bool,str]] = None,
validate: Optional[bool] = False,
model_inference: Optional[object] = None,
watsonx_client: Optional[object] = None,
include_stop_sequences: Optional[bool] = None,
return_options: Optional[dict] = None,
random_seed: Optional[int] = None,
moderations: Optional[dict] = None,
stream: Optional[bool] = None,
**kwargs,
) -> None:
locals_ = locals()
for key, value in locals_.items():
@ -150,143 +122,16 @@ class IBMWatsonXConfig:
def get_supported_openai_params(self):
return [
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
]
def init_watsonx_model(
model_id: str,
url: Optional[str] = None,
api_key: Optional[str] = None,
project_id: Optional[str] = None,
space_id: Optional[str] = None,
wx_credentials: Optional[dict] = None,
region_name: Optional[str] = None,
verify: Optional[Union[bool,str]] = None,
validate: Optional[bool] = False,
watsonx_client: Optional[object] = None,
model_params: Optional[dict] = None,
):
"""
Initialize a watsonx.ai model for inference.
Args:
model_id (str): The model ID to use for inference. If this is a model deployed in a deployment space, the model_id should be in the format 'deployment/<deployment_id>' and the space_id to the deploymend space should be provided.
url (str): The URL of the watsonx.ai instance.
api_key (str): The API key for the watsonx.ai instance.
project_id (str): The project ID for the watsonx.ai instance.
space_id (str): The space ID for the deployment space.
wx_credentials (dict): A dictionary containing 'apikey' and 'url' keys for the watsonx.ai instance.
region_name (str): The region name for the watsonx.ai instance (e.g. 'us-south').
verify (bool): Whether to verify the SSL certificate of calls to the watsonx url.
validate (bool): Whether to validate the model_id at initialization.
watsonx_client (object): An instance of the ibm_watsonx_ai.APIClient class. If this is provided, the model will be initialized using the provided client.
model_params (dict): A dictionary containing additional parameters to pass to the model (see IBMWatsonXConfig for a list of supported parameters).
"""
from ibm_watsonx_ai import APIClient
from ibm_watsonx_ai.foundation_models import ModelInference
if wx_credentials is not None:
if 'apikey' not in wx_credentials and 'api_key' in wx_credentials:
wx_credentials['apikey'] = wx_credentials.pop('api_key')
if 'apikey' not in wx_credentials:
raise WatsonxError(500, "Error: key 'apikey' expected in wx_credentials")
if url is None:
url = get_secret("WX_URL") or get_secret("WATSONX_URL") or get_secret("WML_URL")
if api_key is None:
api_key = get_secret("WX_API_KEY") or get_secret("WML_API_KEY")
if project_id is None:
project_id = get_secret("WX_PROJECT_ID") or get_secret("PROJECT_ID")
if region_name is None:
region_name = get_secret("WML_REGION_NAME") or get_secret("WX_REGION_NAME") or get_secret("REGION_NAME")
if space_id is None:
space_id = get_secret("WX_SPACE_ID") or get_secret("WML_DEPLOYMENT_SPACE_ID") or get_secret("SPACE_ID")
## CHECK IS 'os.environ/' passed in
# Define the list of parameters to check
params_to_check = (url, api_key, project_id, space_id, region_name)
# Iterate over parameters and update if needed
for i, param in enumerate(params_to_check):
if param and param.startswith("os.environ/"):
params_to_check[i] = get_secret(param)
# Assign updated values back to parameters
url, api_key, project_id, space_id, region_name = params_to_check
### SET WATSONX URL
if url is not None or watsonx_client is not None or wx_credentials is not None:
pass
elif region_name is not None:
url = f"https://{region_name}.ml.cloud.ibm.com"
else:
raise WatsonxError(
message="Watsonx URL not set: set WX_URL env variable or in .env file",
status_code=401,
)
if watsonx_client is not None and project_id is None:
project_id = watsonx_client.project_id
if model_id.startswith("deployment/"):
# deployment models are passed in as 'deployment/<deployment_id>'
assert space_id is not None, "space_id is required for deployment models"
deployment_id = '/'.join(model_id.split("/")[1:])
model_id = None
else:
deployment_id = None
if watsonx_client is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
api_client=watsonx_client,
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
elif wx_credentials is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
credentials=wx_credentials,
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
elif api_key is not None:
model = ModelInference(
model_id=model_id,
params=model_params,
credentials={
"apikey": api_key,
"url": url,
},
project_id=project_id,
deployment_id=deployment_id,
verify=verify,
validate=validate,
space_id=space_id,
)
else:
raise WatsonxError(500, "WatsonX credentials not passed or could not be found.")
return model
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
# handle anthropic prompts and amazon titan prompts
if model in custom_prompt_dict:
@ -294,8 +139,10 @@ def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
model_prompt_dict = custom_prompt_dict[model]
prompt = ptf.custom_prompt(
messages=messages,
role_dict=model_prompt_dict.get("role_dict", model_prompt_dict.get("roles")),
initial_prompt_value=model_prompt_dict.get("initial_prompt_value",""),
role_dict=model_prompt_dict.get(
"role_dict", model_prompt_dict.get("roles")
),
initial_prompt_value=model_prompt_dict.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_dict.get("final_prompt_value", ""),
bos_token=model_prompt_dict.get("bos_token", ""),
eos_token=model_prompt_dict.get("eos_token", ""),
@ -308,173 +155,408 @@ def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
elif provider == "ibm-mistralai":
prompt = ptf.mistral_instruct_pt(messages=messages)
else:
prompt = ptf.prompt_factory(model=model, messages=messages, custom_llm_provider='watsonx')
prompt = ptf.prompt_factory(
model=model, messages=messages, custom_llm_provider="watsonx"
)
return prompt
"""
IBM watsonx.ai AUTH Keys/Vars
os.environ['WX_URL'] = ""
os.environ['WX_API_KEY'] = ""
os.environ['WX_PROJECT_ID'] = ""
"""
class IBMWatsonXAI(BaseLLM):
"""
Class to interface with IBM Watsonx.ai API for text generation and embeddings.
def completion(
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params:Optional[dict]=None,
litellm_params:Optional[dict]=None,
logger_fn=None,
timeout:float=None,
):
from ibm_watsonx_ai.foundation_models import Model, ModelInference
Reference: https://cloud.ibm.com/apidocs/watsonx-ai
"""
try:
stream = optional_params.pop("stream", False)
extra_generate_params = dict(
guardrails=optional_params.pop("guardrails", False),
guardrails_hap_params=optional_params.pop("guardrails_hap_params", None),
guardrails_pii_params=optional_params.pop("guardrails_pii_params", None),
concurrency_limit=optional_params.pop("concurrency_limit", 10),
async_mode=optional_params.pop("async_mode", False),
)
if timeout is not None and optional_params.get("time_limit") is None:
# the time_limit in watsonx.ai is in milliseconds (as opposed to OpenAI which is in seconds)
optional_params['time_limit'] = max(0, int(timeout*1000))
api_version = "2024-03-13"
_text_gen_endpoint = "/ml/v1/text/generation"
_text_gen_stream_endpoint = "/ml/v1/text/generation_stream"
_deployment_text_gen_endpoint = "/ml/v1/deployments/{deployment_id}/text/generation"
_deployment_text_gen_stream_endpoint = (
"/ml/v1/deployments/{deployment_id}/text/generation_stream"
)
_embeddings_endpoint = "/ml/v1/text/embeddings"
_prompts_endpoint = "/ml/v1/prompts"
def __init__(self) -> None:
super().__init__()
def _prepare_text_generation_req(
self,
model_id: str,
prompt: str,
stream: bool,
optional_params: dict,
print_verbose: Callable = None,
) -> httpx.Request:
"""
Get the request parameters for text generation.
"""
api_params = self._get_api_params(optional_params, print_verbose=print_verbose)
# build auth headers
api_token = api_params.get("token")
headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json",
"Accept": "application/json",
}
extra_body_params = optional_params.pop("extra_body", {})
optional_params.update(extra_body_params)
# LOAD CONFIG
config = IBMWatsonXConfig.get_config()
# init the payload to the text generation call
payload = {
"input": prompt,
"moderations": optional_params.pop("moderations", {}),
"parameters": optional_params,
}
request_params = dict(version=api_params["api_version"])
# text generation endpoint deployment or model / stream or not
if model_id.startswith("deployment/"):
# deployment models are passed in as 'deployment/<deployment_id>'
if api_params.get("space_id") is None:
raise WatsonXAIError(
status_code=401,
url=api_params["url"],
message="Error: space_id is required for models called using the 'deployment/' endpoint. Pass in the space_id as a parameter or set it in the WX_SPACE_ID environment variable.",
)
deployment_id = "/".join(model_id.split("/")[1:])
endpoint = (
self._deployment_text_gen_stream_endpoint
if stream
else self._deployment_text_gen_endpoint
)
endpoint = endpoint.format(deployment_id=deployment_id)
else:
payload["model_id"] = model_id
payload["project_id"] = api_params["project_id"]
endpoint = (
self._text_gen_stream_endpoint if stream else self._text_gen_endpoint
)
url = api_params["url"].rstrip("/") + endpoint
return httpx.Request(
"POST", url, headers=headers, json=payload, params=request_params
)
def _get_api_params(self, params: dict, print_verbose: Callable = None) -> dict:
"""
Find watsonx.ai credentials in the params or environment variables and return the headers for authentication.
"""
# Load auth variables from params
url = params.pop("url", None)
api_key = params.pop("apikey", None)
token = params.pop("token", None)
project_id = params.pop("project_id", None) # watsonx.ai project_id
space_id = params.pop("space_id", None) # watsonx.ai deployment space_id
region_name = params.pop("region_name", params.pop("region", None))
wx_credentials = params.pop("wx_credentials", None)
api_version = params.pop("api_version", IBMWatsonXAI.api_version)
# Load auth variables from environment variables
if url is None:
url = (
get_secret("WATSONX_URL")
or get_secret("WX_URL")
or get_secret("WML_URL")
)
if api_key is None:
api_key = get_secret("WATSONX_API_KEY") or get_secret("WX_API_KEY")
if token is None:
token = get_secret("WATSONX_TOKEN") or get_secret("WX_TOKEN")
if project_id is None:
project_id = (
get_secret("WATSONX_PROJECT_ID")
or get_secret("WX_PROJECT_ID")
or get_secret("PROJECT_ID")
)
if region_name is None:
region_name = (
get_secret("WATSONX_REGION")
or get_secret("WX_REGION")
or get_secret("REGION")
)
if space_id is None:
space_id = (
get_secret("WATSONX_DEPLOYMENT_SPACE_ID")
or get_secret("WATSONX_SPACE_ID")
or get_secret("WX_SPACE_ID")
or get_secret("SPACE_ID")
)
# credentials parsing
if wx_credentials is not None:
url = wx_credentials.get("url", url)
api_key = wx_credentials.get(
"apikey", wx_credentials.get("api_key", api_key)
)
token = wx_credentials.get("token", token)
# verify that all required credentials are present
if url is None:
raise WatsonXAIError(
status_code=401,
message="Error: Watsonx URL not set. Set WX_URL in environment variables or pass in as a parameter.",
)
if token is None and api_key is not None:
# generate the auth token
if print_verbose:
print_verbose("Generating IAM token for Watsonx.ai")
token = self.generate_iam_token(api_key)
elif token is None and api_key is None:
raise WatsonXAIError(
status_code=401,
url=url,
message="Error: API key or token not found. Set WX_API_KEY or WX_TOKEN in environment variables or pass in as a parameter.",
)
if project_id is None:
raise WatsonXAIError(
status_code=401,
url=url,
message="Error: Watsonx project_id not set. Set WX_PROJECT_ID in environment variables or pass in as a parameter.",
)
return {
"url": url,
"api_key": api_key,
"token": token,
"project_id": project_id,
"space_id": space_id,
"region_name": region_name,
"api_version": api_version,
}
def completion(
self,
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: Optional[dict] = None,
litellm_params: Optional[dict] = None,
logger_fn=None,
timeout: float = None,
):
"""
Send a text generation request to the IBM Watsonx.ai API.
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation
"""
stream = optional_params.pop("stream", False)
# Load default configs
config = IBMWatsonXAIConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
model_inference = optional_params.pop("model_inference", None)
if model_inference is None:
# INIT MODEL
model_client:ModelInference = init_watsonx_model(
model_id=model,
url=optional_params.pop("url", None),
api_key=optional_params.pop("api_key", None),
project_id=optional_params.pop("project_id", None),
space_id=optional_params.pop("space_id", None),
wx_credentials=optional_params.pop("wx_credentials", None),
region_name=optional_params.pop("region_name", None),
verify=optional_params.pop("verify", None),
validate=optional_params.pop("validate", False),
watsonx_client=optional_params.pop("watsonx_client", None),
model_params=optional_params,
)
else:
model_client:ModelInference = model_inference
model = model_client.model_id
# MAKE PROMPT
# Make prompt to send to model
provider = model.split("/")[0]
model_name = '/'.join(model.split("/")[1:])
# model_name = "/".join(model.split("/")[1:])
prompt = convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
## COMPLETION CALL
if stream is True:
request_str = (
"response = model.generate_text_stream(\n"
f"\tprompt={prompt},\n"
"\traw_response=True\n)"
)
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
# remove params that are not needed for streaming
del extra_generate_params["async_mode"]
del extra_generate_params["concurrency_limit"]
# make generate call
response = model_client.generate_text_stream(
prompt=prompt,
raw_response=True,
**extra_generate_params
)
return litellm.CustomStreamWrapper(
response,
model=model,
custom_llm_provider="watsonx",
logging_obj=logging_obj,
)
else:
try:
## LOGGING
request_str = (
"response = model.generate(\n"
f"\tprompt={prompt},\n"
"\traw_response=True\n)"
)
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = model_client.generate(
prompt=prompt,
**extra_generate_params
)
except Exception as e:
raise WatsonxError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=json.dumps(response),
additional_args={"complete_input_dict": optional_params},
)
print_verbose(f"raw model_response: {response}")
## BUILD RESPONSE OBJECT
output_text = response['results'][0]['generated_text']
def process_text_request(request: httpx.Request) -> ModelResponse:
with self._manage_response(
request, logging_obj=logging_obj, input=prompt, timeout=timeout
) as resp:
json_resp = resp.json()
generated_text = json_resp["results"][0]["generated_text"]
prompt_tokens = json_resp["results"][0]["input_token_count"]
completion_tokens = json_resp["results"][0]["generated_token_count"]
model_response["choices"][0]["message"]["content"] = generated_text
model_response["finish_reason"] = json_resp["results"][0]["stop_reason"]
model_response["created"] = int(time.time())
model_response["model"] = model
model_response.usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
return model_response
def process_stream_request(
request: httpx.Request,
) -> litellm.CustomStreamWrapper:
# stream the response - generated chunks will be handled
# by litellm.utils.CustomStreamWrapper.handle_watsonx_stream
with self._manage_response(
request,
logging_obj=logging_obj,
stream=True,
input=prompt,
timeout=timeout,
) as resp:
response = litellm.CustomStreamWrapper(
resp.iter_lines(),
model=model,
custom_llm_provider="watsonx",
logging_obj=logging_obj,
)
return response
try:
if (
len(output_text) > 0
and hasattr(model_response.choices[0], "message")
):
model_response["choices"][0]["message"]["content"] = output_text
model_response["finish_reason"] = response['results'][0]['stop_reason']
prompt_tokens = response['results'][0]['input_token_count']
completion_tokens = response['results'][0]['generated_token_count']
else:
raise Exception()
except:
raise WatsonxError(
message=json.dumps(output_text),
status_code=500,
## Get the response from the model
request = self._prepare_text_generation_req(
model_id=model,
prompt=prompt,
stream=stream,
optional_params=optional_params,
print_verbose=print_verbose,
)
model_response['created'] = int(time.time())
model_response['model'] = model_name
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
if stream:
return process_stream_request(request)
else:
return process_text_request(request)
except WatsonXAIError as e:
raise e
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
def embedding(
self,
model: str,
input: Union[list, str],
api_key: Optional[str] = None,
logging_obj=None,
model_response=None,
optional_params=None,
encoding=None,
):
"""
Send a text embedding request to the IBM Watsonx.ai API.
"""
if optional_params is None:
optional_params = {}
# Load default configs
config = IBMWatsonXAIConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
# Load auth variables from environment variables
if isinstance(input, str):
input = [input]
if api_key is not None:
optional_params["api_key"] = api_key
api_params = self._get_api_params(optional_params)
# build auth headers
api_token = api_params.get("token")
headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json",
"Accept": "application/json",
}
# init the payload to the text generation call
payload = {
"inputs": input,
"model_id": model,
"project_id": api_params["project_id"],
"parameters": optional_params,
}
request_params = dict(version=api_params["api_version"])
url = api_params["url"].rstrip("/") + self._embeddings_endpoint
request = httpx.Request(
"POST", url, headers=headers, json=payload, params=request_params
)
with self._manage_response(
request, logging_obj=logging_obj, input=input
) as resp:
json_resp = resp.json()
results = json_resp.get("results", [])
embedding_response = []
for idx, result in enumerate(results):
embedding_response.append(
{"object": "embedding", "index": idx, "embedding": result["embedding"]}
)
model_response["object"] = "list"
model_response["data"] = embedding_response
model_response["model"] = model
input_tokens = json_resp.get("input_token_count", 0)
model_response.usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
model_response.usage = usage
return model_response
except WatsonxError as e:
raise e
except Exception as e:
raise WatsonxError(status_code=500, message=str(e))
def generate_iam_token(self, api_key=None, **params):
headers = {}
headers["Content-Type"] = "application/x-www-form-urlencoded"
if api_key is None:
api_key = get_secret("WX_API_KEY") or get_secret("WATSONX_API_KEY")
if api_key is None:
raise ValueError("API key is required")
headers["Accept"] = "application/json"
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": api_key,
}
response = httpx.post(
"https://iam.cloud.ibm.com/identity/token", data=data, headers=headers
)
response.raise_for_status()
json_data = response.json()
iam_access_token = json_data["access_token"]
self.token = iam_access_token
return iam_access_token
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass
@contextmanager
def _manage_response(
self,
request: httpx.Request,
logging_obj: Any,
stream: bool = False,
input: Optional[Any] = None,
timeout: float = None,
):
request_str = (
f"response = {request.method}(\n"
f"\turl={request.url},\n"
f"\tjson={request.content.decode()},\n"
f")"
)
json_input = json.loads(request.content.decode())
headers = dict(request.headers)
logging_obj.pre_call(
input=input,
api_key=request.headers.get("Authorization"),
additional_args={
"complete_input_dict": json_input,
"request_str": request_str,
},
)
try:
if stream:
resp = requests.request(
method=request.method,
url=str(request.url),
headers=headers,
json=json_input,
stream=True,
timeout=timeout,
)
# resp.raise_for_status()
yield resp
else:
resp = requests.request(
method=request.method,
url=str(request.url),
headers=headers,
json=json_input,
timeout=timeout,
)
resp.raise_for_status()
yield resp
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
if not stream:
logging_obj.post_call(
input=input,
api_key=request.headers.get("Authorization"),
original_response=json.dumps(resp.json()),
additional_args={
"status_code": resp.status_code,
"complete_input_dict": request,
},
)

View file

@ -1862,7 +1862,7 @@ def completion(
response = response
elif custom_llm_provider == "watsonx":
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
response = watsonx.completion(
response = watsonx.IBMWatsonXAI().completion(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
@ -2976,6 +2976,15 @@ def embedding(
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")

View file

@ -5771,7 +5771,7 @@ def get_supported_openai_params(model: str, custom_llm_provider: str):
"presence_penalty",
]
elif custom_llm_provider == "watsonx":
return litellm.IBMWatsonXConfig().get_supported_openai_params()
return litellm.IBMWatsonXAIConfig().get_supported_openai_params()
def get_formatted_prompt(
@ -9682,20 +9682,31 @@ class CustomStreamWrapper:
def handle_watsonx_stream(self, chunk):
try:
if isinstance(chunk, dict):
pass
elif isinstance(chunk, str):
chunk = json.loads(chunk)
result = chunk.get("results", [])
if len(result) > 0:
text = result[0].get("generated_text", "")
finish_reason = result[0].get("stop_reason")
parsed_response = chunk
elif isinstance(chunk, (str, bytes)):
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
if 'generated_text' in chunk:
response = chunk.replace('data: ', '').strip()
parsed_response = json.loads(response)
else:
return {"text": "", "is_finished": False}
else:
print_verbose(f"chunk: {chunk} (Type: {type(chunk)})")
raise ValueError(f"Unable to parse response. Original response: {chunk}")
results = parsed_response.get("results", [])
if len(results) > 0:
text = results[0].get("generated_text", "")
finish_reason = results[0].get("stop_reason")
is_finished = finish_reason != 'not_finished'
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
"prompt_tokens": results[0].get("input_token_count", None),
"completion_tokens": results[0].get("generated_token_count", None),
}
return ""
return {"text": "", "is_finished": False}
except Exception as e:
raise e
@ -9957,6 +9968,15 @@ class CustomStreamWrapper:
response_obj = self.handle_watsonx_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj.get("prompt_tokens") is not None:
prompt_token_count = getattr(model_response.usage, "prompt_tokens", 0)
model_response.usage.prompt_tokens = (prompt_token_count+response_obj["prompt_tokens"])
if response_obj.get("completion_tokens") is not None:
model_response.usage.completion_tokens = response_obj["completion_tokens"]
model_response.usage.total_tokens = (
getattr(model_response.usage, "prompt_tokens", 0)
+ getattr(model_response.usage, "completion_tokens", 0)
)
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "text-completion-openai":