forked from phoenix/litellm-mirror
Merge pull request #3302 from BerriAI/litellm_default_router_retries
fix(router.py): fix default retry logic
This commit is contained in:
commit
7502cb1aa8
8 changed files with 73 additions and 36 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -51,3 +51,4 @@ loadtest_kub.yaml
|
|||
litellm/proxy/_new_secret_config.yaml
|
||||
litellm/proxy/_new_secret_config.yaml
|
||||
litellm/proxy/_super_secret_config.yaml
|
||||
litellm/proxy/_super_secret_config.yaml
|
||||
|
|
|
@ -447,6 +447,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
)
|
||||
else:
|
||||
openai_aclient = client
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data["messages"],
|
||||
|
|
|
@ -1,23 +1,8 @@
|
|||
model_list:
|
||||
- model_name: text-embedding-3-small
|
||||
litellm_params:
|
||||
model: text-embedding-3-small
|
||||
- model_name: whisper
|
||||
litellm_params:
|
||||
model: azure/azure-whisper
|
||||
api_version: 2024-02-15-preview
|
||||
api_base: os.environ/AZURE_EUROPE_API_BASE
|
||||
api_key: os.environ/AZURE_EUROPE_API_KEY
|
||||
model_info:
|
||||
mode: audio_transcription
|
||||
- litellm_params:
|
||||
model: gpt-4
|
||||
model_name: gpt-4
|
||||
- model_name: azure-mistral
|
||||
litellm_params:
|
||||
model: azure/mistral-large-latest
|
||||
api_base: https://Mistral-large-nmefg-serverless.eastus2.inference.ai.azure.com
|
||||
api_key: os.environ/AZURE_MISTRAL_API_KEY
|
||||
|
||||
# litellm_settings:
|
||||
# cache: True
|
||||
api_base: http://0.0.0.0:8080
|
||||
api_key: my-fake-key
|
||||
model: openai/my-fake-model
|
||||
model_name: fake-openai-endpoint
|
||||
router_settings:
|
||||
num_retries: 0
|
|
@ -50,7 +50,7 @@ class Router:
|
|||
model_names: List = []
|
||||
cache_responses: Optional[bool] = False
|
||||
default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour
|
||||
num_retries: int = 0
|
||||
num_retries: int = openai.DEFAULT_MAX_RETRIES
|
||||
tenacity = None
|
||||
leastbusy_logger: Optional[LeastBusyLoggingHandler] = None
|
||||
lowesttpm_logger: Optional[LowestTPMLoggingHandler] = None
|
||||
|
@ -70,7 +70,7 @@ class Router:
|
|||
] = None, # if you want to cache across model groups
|
||||
client_ttl: int = 3600, # ttl for cached clients - will re-initialize after this time in seconds
|
||||
## RELIABILITY ##
|
||||
num_retries: int = 0,
|
||||
num_retries: Optional[int] = None,
|
||||
timeout: Optional[float] = None,
|
||||
default_litellm_params={}, # default params for Router.chat.completion.create
|
||||
default_max_parallel_requests: Optional[int] = None,
|
||||
|
@ -229,7 +229,12 @@ class Router:
|
|||
self.failed_calls = (
|
||||
InMemoryCache()
|
||||
) # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown
|
||||
self.num_retries = num_retries or litellm.num_retries or 0
|
||||
|
||||
if num_retries is not None:
|
||||
self.num_retries = num_retries
|
||||
elif litellm.num_retries is not None:
|
||||
self.num_retries = litellm.num_retries
|
||||
|
||||
self.timeout = timeout or litellm.request_timeout
|
||||
|
||||
self.retry_after = retry_after
|
||||
|
@ -428,6 +433,7 @@ class Router:
|
|||
kwargs["messages"] = messages
|
||||
kwargs["original_function"] = self._acompletion
|
||||
kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
|
||||
|
||||
timeout = kwargs.get("request_timeout", self.timeout)
|
||||
kwargs.setdefault("metadata", {}).update({"model_group": model})
|
||||
|
||||
|
@ -1415,10 +1421,12 @@ class Router:
|
|||
context_window_fallbacks = kwargs.pop(
|
||||
"context_window_fallbacks", self.context_window_fallbacks
|
||||
)
|
||||
verbose_router_logger.debug(
|
||||
f"async function w/ retries: original_function - {original_function}"
|
||||
)
|
||||
|
||||
num_retries = kwargs.pop("num_retries")
|
||||
|
||||
verbose_router_logger.debug(
|
||||
f"async function w/ retries: original_function - {original_function}, num_retries - {num_retries}"
|
||||
)
|
||||
try:
|
||||
# if the function call is successful, no exception will be raised and we'll break out of the loop
|
||||
response = await original_function(*args, **kwargs)
|
||||
|
@ -2004,7 +2012,9 @@ class Router:
|
|||
stream_timeout = litellm.get_secret(stream_timeout_env_name)
|
||||
litellm_params["stream_timeout"] = stream_timeout
|
||||
|
||||
max_retries = litellm_params.pop("max_retries", 2)
|
||||
max_retries = litellm_params.pop(
|
||||
"max_retries", 0
|
||||
) # router handles retry logic
|
||||
if isinstance(max_retries, str) and max_retries.startswith("os.environ/"):
|
||||
max_retries_env_name = max_retries.replace("os.environ/", "")
|
||||
max_retries = litellm.get_secret(max_retries_env_name)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#### What this tests ####
|
||||
# This tests litellm router
|
||||
|
||||
import sys, os, time
|
||||
import sys, os, time, openai
|
||||
import traceback, asyncio
|
||||
import pytest
|
||||
|
||||
|
@ -19,6 +19,44 @@ import os, httpx
|
|||
load_dotenv()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_retries", [None, 2])
|
||||
@pytest.mark.parametrize("max_retries", [None, 4])
|
||||
def test_router_num_retries_init(num_retries, max_retries):
|
||||
"""
|
||||
- test when num_retries set v/s not
|
||||
- test client value when max retries set v/s not
|
||||
"""
|
||||
router = Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"api_key": "bad-key",
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
"max_retries": max_retries,
|
||||
},
|
||||
"model_info": {"id": 12345},
|
||||
},
|
||||
],
|
||||
num_retries=num_retries,
|
||||
)
|
||||
|
||||
if num_retries is not None:
|
||||
assert router.num_retries == num_retries
|
||||
else:
|
||||
assert router.num_retries == openai.DEFAULT_MAX_RETRIES
|
||||
|
||||
model_client = router._get_client(
|
||||
{"model_info": {"id": 12345}}, client_type="async", kwargs={}
|
||||
)
|
||||
|
||||
if max_retries is not None:
|
||||
assert getattr(model_client, "max_retries") == max_retries
|
||||
else:
|
||||
assert getattr(model_client, "max_retries") == 0
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"timeout", [10, 1.0, httpx.Timeout(timeout=300.0, connect=20.0)]
|
||||
)
|
||||
|
|
|
@ -258,6 +258,7 @@ def test_sync_fallbacks_embeddings():
|
|||
model_list=model_list,
|
||||
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
|
||||
set_verbose=False,
|
||||
num_retries=0,
|
||||
)
|
||||
customHandler = MyCustomHandler()
|
||||
litellm.callbacks = [customHandler]
|
||||
|
@ -393,7 +394,7 @@ def test_dynamic_fallbacks_sync():
|
|||
},
|
||||
]
|
||||
|
||||
router = Router(model_list=model_list, set_verbose=True)
|
||||
router = Router(model_list=model_list, set_verbose=True, num_retries=0)
|
||||
kwargs = {}
|
||||
kwargs["model"] = "azure/gpt-3.5-turbo"
|
||||
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
|
||||
|
|
|
@ -78,7 +78,8 @@ def test_hanging_request_azure():
|
|||
"model_name": "openai-gpt",
|
||||
"litellm_params": {"model": "gpt-3.5-turbo"},
|
||||
},
|
||||
]
|
||||
],
|
||||
num_retries=0,
|
||||
)
|
||||
|
||||
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
|
||||
|
@ -131,7 +132,8 @@ def test_hanging_request_openai():
|
|||
"model_name": "openai-gpt",
|
||||
"litellm_params": {"model": "gpt-3.5-turbo"},
|
||||
},
|
||||
]
|
||||
],
|
||||
num_retries=0,
|
||||
)
|
||||
|
||||
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
|
||||
|
@ -189,6 +191,7 @@ def test_timeout_streaming():
|
|||
# test_timeout_streaming()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="local test")
|
||||
def test_timeout_ollama():
|
||||
# this Will Raise a timeout
|
||||
import litellm
|
||||
|
|
|
@ -110,7 +110,7 @@ class LiteLLM_Params(BaseModel):
|
|||
stream_timeout: Optional[Union[float, str]] = (
|
||||
None # timeout when making stream=True calls, if str, pass in as os.environ/
|
||||
)
|
||||
max_retries: int = 2 # follows openai default of 2
|
||||
max_retries: Optional[int] = None
|
||||
organization: Optional[str] = None # for openai orgs
|
||||
## VERTEX AI ##
|
||||
vertex_project: Optional[str] = None
|
||||
|
@ -148,9 +148,7 @@ class LiteLLM_Params(BaseModel):
|
|||
args.pop("self", None)
|
||||
args.pop("params", None)
|
||||
args.pop("__class__", None)
|
||||
if max_retries is None:
|
||||
max_retries = 2
|
||||
elif isinstance(max_retries, str):
|
||||
if max_retries is not None and isinstance(max_retries, str):
|
||||
max_retries = int(max_retries) # cast to int
|
||||
super().__init__(max_retries=max_retries, **args, **params)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue