Merge pull request #3302 from BerriAI/litellm_default_router_retries

fix(router.py): fix default retry logic
This commit is contained in:
Krish Dholakia 2024-04-27 11:22:03 -07:00 committed by GitHub
commit 7502cb1aa8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 73 additions and 36 deletions

1
.gitignore vendored
View file

@ -51,3 +51,4 @@ loadtest_kub.yaml
litellm/proxy/_new_secret_config.yaml litellm/proxy/_new_secret_config.yaml
litellm/proxy/_new_secret_config.yaml litellm/proxy/_new_secret_config.yaml
litellm/proxy/_super_secret_config.yaml litellm/proxy/_super_secret_config.yaml
litellm/proxy/_super_secret_config.yaml

View file

@ -447,6 +447,7 @@ class OpenAIChatCompletion(BaseLLM):
) )
else: else:
openai_aclient = client openai_aclient = client
## LOGGING ## LOGGING
logging_obj.pre_call( logging_obj.pre_call(
input=data["messages"], input=data["messages"],

View file

@ -1,23 +1,8 @@
model_list: model_list:
- model_name: text-embedding-3-small
litellm_params:
model: text-embedding-3-small
- model_name: whisper
litellm_params:
model: azure/azure-whisper
api_version: 2024-02-15-preview
api_base: os.environ/AZURE_EUROPE_API_BASE
api_key: os.environ/AZURE_EUROPE_API_KEY
model_info:
mode: audio_transcription
- litellm_params: - litellm_params:
model: gpt-4 api_base: http://0.0.0.0:8080
model_name: gpt-4 api_key: my-fake-key
- model_name: azure-mistral model: openai/my-fake-model
litellm_params: model_name: fake-openai-endpoint
model: azure/mistral-large-latest router_settings:
api_base: https://Mistral-large-nmefg-serverless.eastus2.inference.ai.azure.com num_retries: 0
api_key: os.environ/AZURE_MISTRAL_API_KEY
# litellm_settings:
# cache: True

View file

@ -50,7 +50,7 @@ class Router:
model_names: List = [] model_names: List = []
cache_responses: Optional[bool] = False cache_responses: Optional[bool] = False
default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour
num_retries: int = 0 num_retries: int = openai.DEFAULT_MAX_RETRIES
tenacity = None tenacity = None
leastbusy_logger: Optional[LeastBusyLoggingHandler] = None leastbusy_logger: Optional[LeastBusyLoggingHandler] = None
lowesttpm_logger: Optional[LowestTPMLoggingHandler] = None lowesttpm_logger: Optional[LowestTPMLoggingHandler] = None
@ -70,7 +70,7 @@ class Router:
] = None, # if you want to cache across model groups ] = None, # if you want to cache across model groups
client_ttl: int = 3600, # ttl for cached clients - will re-initialize after this time in seconds client_ttl: int = 3600, # ttl for cached clients - will re-initialize after this time in seconds
## RELIABILITY ## ## RELIABILITY ##
num_retries: int = 0, num_retries: Optional[int] = None,
timeout: Optional[float] = None, timeout: Optional[float] = None,
default_litellm_params={}, # default params for Router.chat.completion.create default_litellm_params={}, # default params for Router.chat.completion.create
default_max_parallel_requests: Optional[int] = None, default_max_parallel_requests: Optional[int] = None,
@ -229,7 +229,12 @@ class Router:
self.failed_calls = ( self.failed_calls = (
InMemoryCache() InMemoryCache()
) # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown ) # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown
self.num_retries = num_retries or litellm.num_retries or 0
if num_retries is not None:
self.num_retries = num_retries
elif litellm.num_retries is not None:
self.num_retries = litellm.num_retries
self.timeout = timeout or litellm.request_timeout self.timeout = timeout or litellm.request_timeout
self.retry_after = retry_after self.retry_after = retry_after
@ -428,6 +433,7 @@ class Router:
kwargs["messages"] = messages kwargs["messages"] = messages
kwargs["original_function"] = self._acompletion kwargs["original_function"] = self._acompletion
kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries) kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
timeout = kwargs.get("request_timeout", self.timeout) timeout = kwargs.get("request_timeout", self.timeout)
kwargs.setdefault("metadata", {}).update({"model_group": model}) kwargs.setdefault("metadata", {}).update({"model_group": model})
@ -1415,10 +1421,12 @@ class Router:
context_window_fallbacks = kwargs.pop( context_window_fallbacks = kwargs.pop(
"context_window_fallbacks", self.context_window_fallbacks "context_window_fallbacks", self.context_window_fallbacks
) )
verbose_router_logger.debug(
f"async function w/ retries: original_function - {original_function}"
)
num_retries = kwargs.pop("num_retries") num_retries = kwargs.pop("num_retries")
verbose_router_logger.debug(
f"async function w/ retries: original_function - {original_function}, num_retries - {num_retries}"
)
try: try:
# if the function call is successful, no exception will be raised and we'll break out of the loop # if the function call is successful, no exception will be raised and we'll break out of the loop
response = await original_function(*args, **kwargs) response = await original_function(*args, **kwargs)
@ -2004,7 +2012,9 @@ class Router:
stream_timeout = litellm.get_secret(stream_timeout_env_name) stream_timeout = litellm.get_secret(stream_timeout_env_name)
litellm_params["stream_timeout"] = stream_timeout litellm_params["stream_timeout"] = stream_timeout
max_retries = litellm_params.pop("max_retries", 2) max_retries = litellm_params.pop(
"max_retries", 0
) # router handles retry logic
if isinstance(max_retries, str) and max_retries.startswith("os.environ/"): if isinstance(max_retries, str) and max_retries.startswith("os.environ/"):
max_retries_env_name = max_retries.replace("os.environ/", "") max_retries_env_name = max_retries.replace("os.environ/", "")
max_retries = litellm.get_secret(max_retries_env_name) max_retries = litellm.get_secret(max_retries_env_name)

View file

@ -1,7 +1,7 @@
#### What this tests #### #### What this tests ####
# This tests litellm router # This tests litellm router
import sys, os, time import sys, os, time, openai
import traceback, asyncio import traceback, asyncio
import pytest import pytest
@ -19,6 +19,44 @@ import os, httpx
load_dotenv() load_dotenv()
@pytest.mark.parametrize("num_retries", [None, 2])
@pytest.mark.parametrize("max_retries", [None, 4])
def test_router_num_retries_init(num_retries, max_retries):
"""
- test when num_retries set v/s not
- test client value when max retries set v/s not
"""
router = Router(
model_list=[
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"max_retries": max_retries,
},
"model_info": {"id": 12345},
},
],
num_retries=num_retries,
)
if num_retries is not None:
assert router.num_retries == num_retries
else:
assert router.num_retries == openai.DEFAULT_MAX_RETRIES
model_client = router._get_client(
{"model_info": {"id": 12345}}, client_type="async", kwargs={}
)
if max_retries is not None:
assert getattr(model_client, "max_retries") == max_retries
else:
assert getattr(model_client, "max_retries") == 0
@pytest.mark.parametrize( @pytest.mark.parametrize(
"timeout", [10, 1.0, httpx.Timeout(timeout=300.0, connect=20.0)] "timeout", [10, 1.0, httpx.Timeout(timeout=300.0, connect=20.0)]
) )

View file

@ -258,6 +258,7 @@ def test_sync_fallbacks_embeddings():
model_list=model_list, model_list=model_list,
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}], fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
set_verbose=False, set_verbose=False,
num_retries=0,
) )
customHandler = MyCustomHandler() customHandler = MyCustomHandler()
litellm.callbacks = [customHandler] litellm.callbacks = [customHandler]
@ -393,7 +394,7 @@ def test_dynamic_fallbacks_sync():
}, },
] ]
router = Router(model_list=model_list, set_verbose=True) router = Router(model_list=model_list, set_verbose=True, num_retries=0)
kwargs = {} kwargs = {}
kwargs["model"] = "azure/gpt-3.5-turbo" kwargs["model"] = "azure/gpt-3.5-turbo"
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}] kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]

View file

@ -78,7 +78,8 @@ def test_hanging_request_azure():
"model_name": "openai-gpt", "model_name": "openai-gpt",
"litellm_params": {"model": "gpt-3.5-turbo"}, "litellm_params": {"model": "gpt-3.5-turbo"},
}, },
] ],
num_retries=0,
) )
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0] encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
@ -131,7 +132,8 @@ def test_hanging_request_openai():
"model_name": "openai-gpt", "model_name": "openai-gpt",
"litellm_params": {"model": "gpt-3.5-turbo"}, "litellm_params": {"model": "gpt-3.5-turbo"},
}, },
] ],
num_retries=0,
) )
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0] encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
@ -189,6 +191,7 @@ def test_timeout_streaming():
# test_timeout_streaming() # test_timeout_streaming()
@pytest.mark.skip(reason="local test")
def test_timeout_ollama(): def test_timeout_ollama():
# this Will Raise a timeout # this Will Raise a timeout
import litellm import litellm

View file

@ -110,7 +110,7 @@ class LiteLLM_Params(BaseModel):
stream_timeout: Optional[Union[float, str]] = ( stream_timeout: Optional[Union[float, str]] = (
None # timeout when making stream=True calls, if str, pass in as os.environ/ None # timeout when making stream=True calls, if str, pass in as os.environ/
) )
max_retries: int = 2 # follows openai default of 2 max_retries: Optional[int] = None
organization: Optional[str] = None # for openai orgs organization: Optional[str] = None # for openai orgs
## VERTEX AI ## ## VERTEX AI ##
vertex_project: Optional[str] = None vertex_project: Optional[str] = None
@ -148,9 +148,7 @@ class LiteLLM_Params(BaseModel):
args.pop("self", None) args.pop("self", None)
args.pop("params", None) args.pop("params", None)
args.pop("__class__", None) args.pop("__class__", None)
if max_retries is None: if max_retries is not None and isinstance(max_retries, str):
max_retries = 2
elif isinstance(max_retries, str):
max_retries = int(max_retries) # cast to int max_retries = int(max_retries) # cast to int
super().__init__(max_retries=max_retries, **args, **params) super().__init__(max_retries=max_retries, **args, **params)