(feat) add vertex ai gemini-pro-vision

This commit is contained in:
ishaan-jaff 2023-12-16 18:31:03 +05:30
parent 7b851a3870
commit 774a725ccb

View file

@ -57,6 +57,108 @@ class VertexAIConfig():
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
def _get_image_bytes_from_url(image_url: str) -> bytes:
try:
response = requests.get(image_url)
response.raise_for_status() # Raise an error for bad responses (4xx and 5xx)
image_bytes = response.content
return image_bytes
except requests.exceptions.RequestException as e:
# Handle any request exceptions (e.g., connection error, timeout)
return b'' # Return an empty bytes object or handle the error as needed
def _load_image_from_url(image_url: str):
"""
Loads an image from a URL.
Args:
image_url (str): The URL of the image.
Returns:
Image: The loaded image.
"""
from vertexai.preview.generative_models import GenerativeModel, Part, GenerationConfig, Image
image_bytes = _get_image_bytes_from_url(image_url)
return Image.from_bytes(image_bytes)
def _gemini_vision_convert_messages(
messages: list
):
"""
Converts given messages for GPT-4 Vision to Gemini format.
Args:
messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type:
- If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt.
- If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images.
Returns:
tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images).
Raises:
VertexAIError: If the import of the 'vertexai' module fails, indicating that 'google-cloud-aiplatform' needs to be installed.
Exception: If any other exception occurs during the execution of the function.
Note:
This function is based on the code from the 'gemini/getting-started/intro_gemini_python.ipynb' notebook in the 'generative-ai' repository on GitHub.
The supported MIME types for images include 'image/png' and 'image/jpeg'.
Examples:
>>> messages = [
... {"content": "Hello, world!"},
... {"content": [{"type": "text", "text": "This is a text message."}, {"type": "image_url", "image_url": "example.com/image.png"}]},
... ]
>>> _gemini_vision_convert_messages(messages)
('Hello, world!This is a text message.', [<Part object>, <Part object>])
"""
try:
import vertexai
except:
raise VertexAIError(status_code=400,message="vertexai import failed please run `pip install google-cloud-aiplatform`")
try:
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
from vertexai.preview.generative_models import GenerativeModel, Part, GenerationConfig, Image
# given messages for gpt-4 vision, convert them for gemini
# https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
prompt = ""
images = []
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
elif element["type"] == "image_url":
image_url = element["image_url"]["url"]
images.append(image_url)
# processing images passed to gemini
processed_images = []
for img in images:
if "gs://" in img:
# Case 1: Images with Cloud Storage URIs
# The supported MIME types for images include image/png and image/jpeg.
part_mime = "image/png" if "png" in img else "image/jpeg"
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
processed_images.append(google_clooud_part)
elif "https:/" in img:
# Case 2: Images with direct links
image = _load_image_from_url(img)
processed_images.append(image)
elif ".mp4" in img and "gs://" in img:
# Case 3: Videos with Cloud Storage URIs
part_mime = "video/mp4"
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
processed_images.append(google_clooud_part)
return prompt, processed_images
except Exception as e:
raise e
def completion(
model: str,
messages: list,
@ -93,7 +195,7 @@ def completion(
# vertexai does not use an API key, it looks for credentials.json in the environment
prompt = " ".join([message["content"] for message in messages])
prompt = " ".join([message["content"] for message in messages if isinstance(message["content"], str)])
mode = ""
@ -103,6 +205,10 @@ def completion(
llm_model = GenerativeModel(model)
mode = ""
request_str += f"llm_model = GenerativeModel({model})\n"
elif model in ["gemini-pro-vision"]:
llm_model = GenerativeModel(model)
request_str += f"llm_model = GenerativeModel({model})\n"
mode = "vision"
elif model in litellm.vertex_chat_models:
llm_model = ChatModel.from_pretrained(model)
mode = "chat"
@ -138,13 +244,36 @@ def completion(
model_response = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params), stream=stream)
optional_params["stream"] = True
return model_response
request_str += f"chat.send_message({prompt}, generation_config=GenerationConfig(**{optional_params})).text\n"
elif mode == "vision":
print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
print_verbose(f"\nProcessing input messages = {messages}")
prompt, images = _gemini_vision_convert_messages(messages=messages)
content = [prompt] + images
if "stream" in optional_params and optional_params["stream"] == True:
stream = optional_params.pop("stream")
request_str += f"response = llm_model.generate_content({content}, generation_config=GenerationConfig(**{optional_params}), stream={stream})\n"
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
model_response = llm_model.generate_content(
contents=content,
generation_config=GenerationConfig(**optional_params),
stream=True
)
optional_params["stream"] = True
return model_response
request_str += f"response = llm_model.generate_content({content})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = chat.send_message(prompt, generation_config=GenerationConfig(**optional_params))
completion_response = response_obj.text
response_obj = response_obj._raw_response
## LLM Call
response = llm_model.generate_content(
contents=content,
generation_config=GenerationConfig(**optional_params)
)
completion_response = response.text
response_obj = response._raw_response
elif mode == "chat":
chat = llm_model.start_chat()
request_str+= f"chat = llm_model.start_chat()\n"