forked from phoenix/litellm-mirror
add testing module
This commit is contained in:
parent
04bffcea92
commit
77e4acc7fa
6 changed files with 60 additions and 2 deletions
|
@ -140,7 +140,8 @@ open_ai_embedding_models = [
|
|||
]
|
||||
|
||||
from .timeout import timeout
|
||||
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, load_test_model, get_litellm_params
|
||||
from .testing import *
|
||||
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, get_litellm_params
|
||||
from .main import * # Import all the symbols from main.py
|
||||
from .integrations import *
|
||||
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
57
litellm/testing.py
Normal file
57
litellm/testing.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import litellm
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
def batch_completion(*args, **kwargs):
|
||||
batch_messages = args[1] if len(args) > 1 else kwargs.get("messages")
|
||||
results = []
|
||||
completions = []
|
||||
exceptions = []
|
||||
times = []
|
||||
with ThreadPoolExecutor() as executor:
|
||||
for message_list in batch_messages:
|
||||
if len(args) > 1:
|
||||
args_modified = list(args)
|
||||
args_modified[1] = message_list
|
||||
future = executor.submit(litellm.completion, *args_modified)
|
||||
else:
|
||||
kwargs_modified = dict(kwargs)
|
||||
kwargs_modified["messages"] = message_list
|
||||
future = executor.submit(litellm.completion, *args, **kwargs_modified)
|
||||
completions.append(future)
|
||||
|
||||
# Retrieve the results and calculate elapsed time for each completion call
|
||||
for future in completions:
|
||||
start_time = time.time()
|
||||
try:
|
||||
result = future.result()
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
result_dict = {"status": "succeeded", "response": future.result(), "response_time": elapsed_time}
|
||||
results.append(result_dict)
|
||||
except Exception as e:
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
result_dict = {"status": "succeeded", "response": e, "response_time": elapsed_time}
|
||||
results.append(result_dict)
|
||||
|
||||
return results
|
||||
|
||||
def load_test_model(model: str, custom_llm_provider: str = None, custom_api_base: str = None, prompt: str = None, num_calls: int = None, force_timeout: int = None):
|
||||
test_prompt = "Hey, how's it going"
|
||||
test_calls = 100
|
||||
if prompt:
|
||||
test_prompt = prompt
|
||||
if num_calls:
|
||||
test_calls = num_calls
|
||||
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
|
||||
start_time = time.time()
|
||||
try:
|
||||
results = batch_completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider, custom_api_base = custom_api_base, force_timeout=force_timeout)
|
||||
end_time = time.time()
|
||||
response_time = end_time - start_time
|
||||
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": test_prompt, "results": results}
|
||||
except Exception as e:
|
||||
end_time = time.time()
|
||||
response_time = end_time - start_time
|
||||
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": test_prompt, "exception": e}
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.400"
|
||||
version = "0.1.401"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue