add testing module

This commit is contained in:
Krrish Dholakia 2023-08-16 09:03:33 -07:00
parent 04bffcea92
commit 77e4acc7fa
6 changed files with 60 additions and 2 deletions

View file

@ -140,7 +140,8 @@ open_ai_embedding_models = [
]
from .timeout import timeout
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, load_test_model, get_litellm_params
from .testing import *
from .utils import client, logging, exception_type, get_optional_params, modify_integration, token_counter, cost_per_token, completion_cost, get_litellm_params
from .main import * # Import all the symbols from main.py
from .integrations import *
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError

57
litellm/testing.py Normal file
View file

@ -0,0 +1,57 @@
import litellm
import time
from concurrent.futures import ThreadPoolExecutor
def batch_completion(*args, **kwargs):
batch_messages = args[1] if len(args) > 1 else kwargs.get("messages")
results = []
completions = []
exceptions = []
times = []
with ThreadPoolExecutor() as executor:
for message_list in batch_messages:
if len(args) > 1:
args_modified = list(args)
args_modified[1] = message_list
future = executor.submit(litellm.completion, *args_modified)
else:
kwargs_modified = dict(kwargs)
kwargs_modified["messages"] = message_list
future = executor.submit(litellm.completion, *args, **kwargs_modified)
completions.append(future)
# Retrieve the results and calculate elapsed time for each completion call
for future in completions:
start_time = time.time()
try:
result = future.result()
end_time = time.time()
elapsed_time = end_time - start_time
result_dict = {"status": "succeeded", "response": future.result(), "response_time": elapsed_time}
results.append(result_dict)
except Exception as e:
end_time = time.time()
elapsed_time = end_time - start_time
result_dict = {"status": "succeeded", "response": e, "response_time": elapsed_time}
results.append(result_dict)
return results
def load_test_model(model: str, custom_llm_provider: str = None, custom_api_base: str = None, prompt: str = None, num_calls: int = None, force_timeout: int = None):
test_prompt = "Hey, how's it going"
test_calls = 100
if prompt:
test_prompt = prompt
if num_calls:
test_calls = num_calls
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
start_time = time.time()
try:
results = batch_completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider, custom_api_base = custom_api_base, force_timeout=force_timeout)
end_time = time.time()
response_time = end_time - start_time
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": test_prompt, "results": results}
except Exception as e:
end_time = time.time()
response_time = end_time - start_time
return {"total_response_time": response_time, "calls_made": test_calls, "prompt": test_prompt, "exception": e}

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "0.1.400"
version = "0.1.401"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"