diff --git a/docs/my-website/docs/providers/predibase.md b/docs/my-website/docs/providers/predibase.md
new file mode 100644
index 000000000..3d5bbaef4
--- /dev/null
+++ b/docs/my-website/docs/providers/predibase.md
@@ -0,0 +1,247 @@
+import Tabs from '@theme/Tabs';
+import TabItem from '@theme/TabItem';
+
+# 🆕 Predibase
+
+LiteLLM supports all models on Predibase
+
+
+## Usage
+
+
+
+
+### API KEYS
+```python
+import os
+os.environ["PREDIBASE_API_KEY"] = ""
+```
+
+### Example Call
+
+```python
+from litellm import completion
+import os
+## set ENV variables
+os.environ["PREDIBASE_API_KEY"] = "predibase key"
+os.environ["PREDIBASE_TENANT_ID"] = "predibase tenant id"
+
+# predibase llama-3 call
+response = completion(
+ model="predibase/llama-3-8b-instruct",
+ messages = [{ "content": "Hello, how are you?","role": "user"}]
+)
+```
+
+
+
+
+1. Add models to your config.yaml
+
+ ```yaml
+ model_list:
+ - model_name: llama-3
+ litellm_params:
+ model: predibase/llama-3-8b-instruct
+ api_key: os.environ/PREDIBASE_API_KEY
+ tenant_id: os.environ/PREDIBASE_TENANT_ID
+ ```
+
+
+
+2. Start the proxy
+
+ ```bash
+ $ litellm --config /path/to/config.yaml --debug
+ ```
+
+3. Send Request to LiteLLM Proxy Server
+
+
+
+
+
+ ```python
+ import openai
+ client = openai.OpenAI(
+ api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
+ base_url="http://0.0.0.0:4000" # litellm-proxy-base url
+ )
+
+ response = client.chat.completions.create(
+ model="llama-3",
+ messages = [
+ {
+ "role": "system",
+ "content": "Be a good human!"
+ },
+ {
+ "role": "user",
+ "content": "What do you know about earth?"
+ }
+ ]
+ )
+
+ print(response)
+ ```
+
+
+
+
+
+ ```shell
+ curl --location 'http://0.0.0.0:4000/chat/completions' \
+ --header 'Authorization: Bearer sk-1234' \
+ --header 'Content-Type: application/json' \
+ --data '{
+ "model": "llama-3",
+ "messages": [
+ {
+ "role": "system",
+ "content": "Be a good human!"
+ },
+ {
+ "role": "user",
+ "content": "What do you know about earth?"
+ }
+ ],
+ }'
+ ```
+
+
+
+
+
+
+
+
+
+## Advanced Usage - Prompt Formatting
+
+LiteLLM has prompt template mappings for all `meta-llama` llama3 instruct models. [**See Code**](https://github.com/BerriAI/litellm/blob/4f46b4c3975cd0f72b8c5acb2cb429d23580c18a/litellm/llms/prompt_templates/factory.py#L1360)
+
+To apply a custom prompt template:
+
+
+
+
+```python
+import litellm
+
+import os
+os.environ["PREDIBASE_API_KEY"] = ""
+
+# Create your own custom prompt template
+litellm.register_prompt_template(
+ model="togethercomputer/LLaMA-2-7B-32K",
+ initial_prompt_value="You are a good assistant" # [OPTIONAL]
+ roles={
+ "system": {
+ "pre_message": "[INST] <>\n", # [OPTIONAL]
+ "post_message": "\n<>\n [/INST]\n" # [OPTIONAL]
+ },
+ "user": {
+ "pre_message": "[INST] ", # [OPTIONAL]
+ "post_message": " [/INST]" # [OPTIONAL]
+ },
+ "assistant": {
+ "pre_message": "\n" # [OPTIONAL]
+ "post_message": "\n" # [OPTIONAL]
+ }
+ }
+ final_prompt_value="Now answer as best you can:" # [OPTIONAL]
+)
+
+def predibase_custom_model():
+ model = "predibase/togethercomputer/LLaMA-2-7B-32K"
+ response = completion(model=model, messages=messages)
+ print(response['choices'][0]['message']['content'])
+ return response
+
+predibase_custom_model()
+```
+
+
+
+```yaml
+# Model-specific parameters
+model_list:
+ - model_name: mistral-7b # model alias
+ litellm_params: # actual params for litellm.completion()
+ model: "predibase/mistralai/Mistral-7B-Instruct-v0.1"
+ api_key: os.environ/PREDIBASE_API_KEY
+ initial_prompt_value: "\n"
+ roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
+ final_prompt_value: "\n"
+ bos_token: ""
+ eos_token: ""
+ max_tokens: 4096
+```
+
+
+
+
+
+## Passing additional params - max_tokens, temperature
+See all litellm.completion supported params [here](https://docs.litellm.ai/docs/completion/input)
+
+```python
+# !pip install litellm
+from litellm import completion
+import os
+## set ENV variables
+os.environ["PREDIBASE_API_KEY"] = "predibase key"
+
+# predibae llama-3 call
+response = completion(
+ model="predibase/llama3-8b-instruct",
+ messages = [{ "content": "Hello, how are you?","role": "user"}],
+ max_tokens=20,
+ temperature=0.5
+)
+```
+
+**proxy**
+
+```yaml
+ model_list:
+ - model_name: llama-3
+ litellm_params:
+ model: predibase/llama-3-8b-instruct
+ api_key: os.environ/PREDIBASE_API_KEY
+ max_tokens: 20
+ temperature: 0.5
+```
+
+## Passings Predibase specific params - adapter_id, adapter_source,
+Send params [not supported by `litellm.completion()`](https://docs.litellm.ai/docs/completion/input) but supported by Predibase by passing them to `litellm.completion`
+
+Example `adapter_id`, `adapter_source` are Predibase specific param - [See List](https://github.com/BerriAI/litellm/blob/8a35354dd6dbf4c2fcefcd6e877b980fcbd68c58/litellm/llms/predibase.py#L54)
+
+```python
+# !pip install litellm
+from litellm import completion
+import os
+## set ENV variables
+os.environ["PREDIBASE_API_KEY"] = "predibase key"
+
+# predibase llama3 call
+response = completion(
+ model="predibase/llama-3-8b-instruct",
+ messages = [{ "content": "Hello, how are you?","role": "user"}],
+ adapter_id="my_repo/3",
+ adapter_soruce="pbase",
+)
+```
+
+**proxy**
+
+```yaml
+ model_list:
+ - model_name: llama-3
+ litellm_params:
+ model: predibase/llama-3-8b-instruct
+ api_key: os.environ/PREDIBASE_API_KEY
+ adapter_id: my_repo/3
+ adapter_source: pbase
+```
diff --git a/docs/my-website/sidebars.js b/docs/my-website/sidebars.js
index 3c968ea57..4ce587080 100644
--- a/docs/my-website/sidebars.js
+++ b/docs/my-website/sidebars.js
@@ -132,6 +132,8 @@ const sidebars = {
"providers/cohere",
"providers/anyscale",
"providers/huggingface",
+ "providers/watsonx",
+ "providers/predibase",
"providers/ollama",
"providers/perplexity",
"providers/groq",
@@ -151,7 +153,7 @@ const sidebars = {
"providers/openrouter",
"providers/custom_openai_proxy",
"providers/petals",
- "providers/watsonx",
+
],
},
"proxy/custom_pricing",
diff --git a/litellm/tests/test_completion.py b/litellm/tests/test_completion.py
index f726ed95a..630baf346 100644
--- a/litellm/tests/test_completion.py
+++ b/litellm/tests/test_completion.py
@@ -96,7 +96,6 @@ async def test_completion_predibase(sync_mode):
response = completion(
model="predibase/llama-3-8b-instruct",
tenant_id="c4768f95",
- api_base="https://serving.app.predibase.com",
api_key=os.getenv("PREDIBASE_API_KEY"),
messages=[{"role": "user", "content": "What is the meaning of life?"}],
)