forked from phoenix/litellm-mirror
Merge pull request #4651 from msabramo/docs-logging-cleanup
Docs: Miscellaneous cleanup of `docs/my-website/docs/proxy/logging.md`
This commit is contained in:
commit
79d6b69d1c
2 changed files with 65 additions and 53 deletions
|
@ -1,28 +1,21 @@
|
|||
# 🪢 Logging
|
||||
|
||||
Log Proxy input, output, and exceptions using:
|
||||
|
||||
- Langfuse
|
||||
- OpenTelemetry
|
||||
- Custom Callbacks
|
||||
- DataDog
|
||||
- DynamoDB
|
||||
- s3 Bucket
|
||||
- etc.
|
||||
|
||||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
|
||||
# 🪢 Logging - Langfuse, OpenTelemetry, Custom Callbacks, DataDog, s3 Bucket, Sentry, Athina, Azure Content-Safety
|
||||
|
||||
Log Proxy Input, Output, Exceptions using Langfuse, OpenTelemetry, Custom Callbacks, DataDog, DynamoDB, s3 Bucket
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Logging to Langfuse](#logging-proxy-inputoutput---langfuse)
|
||||
- [Logging with OpenTelemetry (OpenTelemetry)](#logging-proxy-inputoutput-in-opentelemetry-format)
|
||||
- [Async Custom Callbacks](#custom-callback-class-async)
|
||||
- [Async Custom Callback APIs](#custom-callback-apis-async)
|
||||
- [Logging to Galileo](#logging-llm-io-to-galileo)
|
||||
- [Logging to OpenMeter](#logging-proxy-inputoutput---langfuse)
|
||||
- [Logging to s3 Buckets](#logging-proxy-inputoutput---s3-buckets)
|
||||
- [Logging to DataDog](#logging-proxy-inputoutput---datadog)
|
||||
- [Logging to DynamoDB](#logging-proxy-inputoutput---dynamodb)
|
||||
- [Logging to Sentry](#logging-proxy-inputoutput---sentry)
|
||||
- [Logging to Athina](#logging-proxy-inputoutput-athina)
|
||||
- [(BETA) Moderation with Azure Content-Safety](#moderation-with-azure-content-safety)
|
||||
|
||||
## Logging Proxy Input/Output - Langfuse
|
||||
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
|
||||
|
||||
**Step 1** Install langfuse
|
||||
|
@ -32,6 +25,7 @@ pip install langfuse>=2.0.0
|
|||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -42,6 +36,7 @@ litellm_settings:
|
|||
```
|
||||
|
||||
**Step 3**: Set required env variables for logging to langfuse
|
||||
|
||||
```shell
|
||||
export LANGFUSE_PUBLIC_KEY="pk_kk"
|
||||
export LANGFUSE_SECRET_KEY="sk_ss"
|
||||
|
@ -52,11 +47,13 @@ export LANGFUSE_HOST="https://xxx.langfuse.com"
|
|||
**Step 4**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```
|
||||
litellm --test
|
||||
```
|
||||
|
@ -67,7 +64,6 @@ Expected output on Langfuse
|
|||
|
||||
### Logging Metadata to Langfuse
|
||||
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
@ -93,6 +89,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
|
@ -126,6 +123,7 @@ response = client.chat.completions.create(
|
|||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
|
@ -168,7 +166,6 @@ print(response)
|
|||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
### Team based Logging to Langfuse
|
||||
|
||||
**Example:**
|
||||
|
@ -257,6 +254,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
|
@ -287,6 +285,7 @@ response = client.chat.completions.create(
|
|||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
|
@ -332,7 +331,6 @@ You will see `raw_request` in your Langfuse Metadata. This is the RAW CURL comma
|
|||
|
||||
<Image img={require('../../img/debug_langfuse.png')} />
|
||||
|
||||
|
||||
## Logging Proxy Input/Output in OpenTelemetry format
|
||||
|
||||
:::info
|
||||
|
@ -348,10 +346,8 @@ OTEL_SERVICE_NAME=<your-service-name>` # default="litellm"
|
|||
|
||||
<Tabs>
|
||||
|
||||
|
||||
<TabItem value="Console Exporter" label="Log to console">
|
||||
|
||||
|
||||
**Step 1:** Set callbacks and env vars
|
||||
|
||||
Add the following to your env
|
||||
|
@ -367,7 +363,6 @@ litellm_settings:
|
|||
callbacks: ["otel"]
|
||||
```
|
||||
|
||||
|
||||
**Step 2**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
@ -427,7 +422,6 @@ This is the Span from OTEL Logging
|
|||
|
||||
</TabItem>
|
||||
|
||||
|
||||
<TabItem value="Honeycomb" label="Log to Honeycomb">
|
||||
|
||||
#### Quick Start - Log to Honeycomb
|
||||
|
@ -449,7 +443,6 @@ litellm_settings:
|
|||
callbacks: ["otel"]
|
||||
```
|
||||
|
||||
|
||||
**Step 2**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
@ -474,10 +467,8 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
|
||||
</TabItem>
|
||||
|
||||
|
||||
<TabItem value="otel-col" label="Log to OTEL HTTP Collector">
|
||||
|
||||
#### Quick Start - Log to OTEL Collector
|
||||
|
@ -499,7 +490,6 @@ litellm_settings:
|
|||
callbacks: ["otel"]
|
||||
```
|
||||
|
||||
|
||||
**Step 2**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
@ -526,7 +516,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
</TabItem>
|
||||
|
||||
|
||||
<TabItem value="otel-col-grpc" label="Log to OTEL GRPC Collector">
|
||||
|
||||
#### Quick Start - Log to OTEL GRPC Collector
|
||||
|
@ -548,7 +537,6 @@ litellm_settings:
|
|||
callbacks: ["otel"]
|
||||
```
|
||||
|
||||
|
||||
**Step 2**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
@ -573,7 +561,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="traceloop" label="Log to Traceloop Cloud">
|
||||
|
@ -596,7 +583,6 @@ environment_variables:
|
|||
TRACELOOP_API_KEY: "XXXXX"
|
||||
```
|
||||
|
||||
|
||||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
@ -632,11 +618,15 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
❓ Use this when you want to **pass information about the incoming request in a distributed tracing system**
|
||||
|
||||
✅ Key change: Pass the **`traceparent` header** in your requests. [Read more about traceparent headers here](https://uptrace.dev/opentelemetry/opentelemetry-traceparent.html#what-is-traceparent-header)
|
||||
|
||||
```curl
|
||||
traceparent: 00-80e1afed08e019fc1110464cfa66635c-7a085853722dc6d2-01
|
||||
```
|
||||
|
||||
Example Usage
|
||||
|
||||
1. Make Request to LiteLLM Proxy with `traceparent` header
|
||||
|
||||
```python
|
||||
import openai
|
||||
import uuid
|
||||
|
@ -660,7 +650,6 @@ response = client.chat.completions.create(
|
|||
)
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
|
||||
```shell
|
||||
|
@ -674,12 +663,12 @@ Search for Trace=`80e1afed08e019fc1110464cfa66635c` on your OTEL Collector
|
|||
|
||||
<Image img={require('../../img/otel_parent.png')} />
|
||||
|
||||
|
||||
|
||||
## Custom Callback Class [Async]
|
||||
|
||||
Use this when you want to run custom callbacks in `python`
|
||||
|
||||
#### Step 1 - Create your custom `litellm` callback class
|
||||
|
||||
We use `litellm.integrations.custom_logger` for this, **more details about litellm custom callbacks [here](https://docs.litellm.ai/docs/observability/custom_callback)**
|
||||
|
||||
Define your custom callback class in a python file.
|
||||
|
@ -782,16 +771,17 @@ proxy_handler_instance = MyCustomHandler()
|
|||
```
|
||||
|
||||
#### Step 2 - Pass your custom callback class in `config.yaml`
|
||||
|
||||
We pass the custom callback class defined in **Step1** to the config.yaml.
|
||||
Set `callbacks` to `python_filename.logger_instance_name`
|
||||
|
||||
In the config below, we pass
|
||||
|
||||
- python_filename: `custom_callbacks.py`
|
||||
- logger_instance_name: `proxy_handler_instance`. This is defined in Step 1
|
||||
|
||||
`callbacks: custom_callbacks.proxy_handler_instance`
|
||||
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -804,6 +794,7 @@ litellm_settings:
|
|||
```
|
||||
|
||||
#### Step 3 - Start proxy + test request
|
||||
|
||||
```shell
|
||||
litellm --config proxy_config.yaml
|
||||
```
|
||||
|
@ -825,6 +816,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
```
|
||||
|
||||
#### Resulting Log on Proxy
|
||||
|
||||
```shell
|
||||
On Success
|
||||
Model: gpt-3.5-turbo,
|
||||
|
@ -877,7 +869,6 @@ class MyCustomHandler(CustomLogger):
|
|||
"max_tokens": 10
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
#### Logging `model_info` set in config.yaml
|
||||
|
@ -895,11 +886,13 @@ class MyCustomHandler(CustomLogger):
|
|||
```
|
||||
|
||||
**Expected Output**
|
||||
|
||||
```json
|
||||
{'mode': 'embedding', 'input_cost_per_token': 0.002}
|
||||
```
|
||||
|
||||
### Logging responses from proxy
|
||||
|
||||
Both `/chat/completions` and `/embeddings` responses are available as `response_obj`
|
||||
|
||||
**Note: for `/chat/completions`, both `stream=True` and `non stream` responses are available as `response_obj`**
|
||||
|
@ -913,6 +906,7 @@ class MyCustomHandler(CustomLogger):
|
|||
```
|
||||
|
||||
**Expected Output /chat/completion [for both `stream` and `non-stream` responses]**
|
||||
|
||||
```json
|
||||
ModelResponse(
|
||||
id='chatcmpl-8Tfu8GoMElwOZuj2JlHBhNHG01PPo',
|
||||
|
@ -939,6 +933,7 @@ ModelResponse(
|
|||
```
|
||||
|
||||
**Expected Output /embeddings**
|
||||
|
||||
```json
|
||||
{
|
||||
'model': 'ada',
|
||||
|
@ -958,7 +953,6 @@ ModelResponse(
|
|||
}
|
||||
```
|
||||
|
||||
|
||||
## Custom Callback APIs [Async]
|
||||
|
||||
:::info
|
||||
|
@ -968,10 +962,12 @@ This is an Enterprise only feature [Get Started with Enterprise here](https://gi
|
|||
:::
|
||||
|
||||
Use this if you:
|
||||
|
||||
- Want to use custom callbacks written in a non Python programming language
|
||||
- Want your callbacks to run on a different microservice
|
||||
|
||||
#### Step 1. Create your generic logging API endpoint
|
||||
|
||||
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
|
||||
|
||||
Your server should support the following Request format:
|
||||
|
@ -1034,11 +1030,8 @@ async def log_event(request: Request):
|
|||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="127.0.0.1", port=4000)
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
#### Step 2. Set your `GENERIC_LOGGER_ENDPOINT` to the endpoint + route we should send callback logs to
|
||||
|
||||
```shell
|
||||
|
@ -1048,6 +1041,7 @@ os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:4000/log-event"
|
|||
#### Step 3. Create a `config.yaml` file and set `litellm_settings`: `success_callback` = ["generic"]
|
||||
|
||||
Example litellm proxy config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1059,8 +1053,8 @@ litellm_settings:
|
|||
|
||||
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
|
||||
|
||||
|
||||
## Logging LLM IO to Galileo
|
||||
|
||||
[BETA]
|
||||
|
||||
Log LLM I/O on [www.rungalileo.io](https://www.rungalileo.io/)
|
||||
|
@ -1083,6 +1077,7 @@ export GALILEO_PASSWORD=""
|
|||
### Quick Start
|
||||
|
||||
1. Add to Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
|
@ -1118,7 +1113,6 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
'
|
||||
```
|
||||
|
||||
|
||||
🎉 That's it - Expect to see your Logs on your Galileo Dashboard
|
||||
|
||||
## Logging Proxy Cost + Usage - OpenMeter
|
||||
|
@ -1136,6 +1130,7 @@ export OPENMETER_API_KEY=""
|
|||
### Quick Start
|
||||
|
||||
1. Add to Config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- litellm_params:
|
||||
|
@ -1171,13 +1166,14 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
'
|
||||
```
|
||||
|
||||
|
||||
<Image img={require('../../img/openmeter_img_2.png')} />
|
||||
|
||||
## Logging Proxy Input/Output - DataDog
|
||||
|
||||
We will use the `--config` to set `litellm.success_callback = ["datadog"]` this will log all successfull LLM calls to DataDog
|
||||
|
||||
**Step 1**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1197,6 +1193,7 @@ DD_SITE="us5.datadoghq.com" # your datadog base url
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
@ -1224,10 +1221,10 @@ Expected output on Datadog
|
|||
|
||||
<Image img={require('../../img/dd_small1.png')} />
|
||||
|
||||
|
||||
## Logging Proxy Input/Output - s3 Buckets
|
||||
|
||||
We will use the `--config` to set
|
||||
|
||||
- `litellm.success_callback = ["s3"]`
|
||||
|
||||
This will log all successfull LLM calls to s3 Bucket
|
||||
|
@ -1241,6 +1238,7 @@ AWS_REGION_NAME = ""
|
|||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1260,11 +1258,13 @@ litellm_settings:
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -1284,6 +1284,7 @@ Your logs should be available on the specified s3 Bucket
|
|||
## Logging Proxy Input/Output - DynamoDB
|
||||
|
||||
We will use the `--config` to set
|
||||
|
||||
- `litellm.success_callback = ["dynamodb"]`
|
||||
- `litellm.dynamodb_table_name = "your-table-name"`
|
||||
|
||||
|
@ -1298,6 +1299,7 @@ AWS_REGION_NAME = ""
|
|||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1311,11 +1313,13 @@ litellm_settings:
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -1403,19 +1407,18 @@ Your logs should be available on DynamoDB
|
|||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
## Logging Proxy Input/Output - Sentry
|
||||
|
||||
If api calls fail (llm/database) you can log those to Sentry:
|
||||
|
||||
**Step 1** Install Sentry
|
||||
|
||||
```shell
|
||||
pip install --upgrade sentry-sdk
|
||||
```
|
||||
|
||||
**Step 2**: Save your Sentry_DSN and add `litellm_settings`: `failure_callback`
|
||||
|
||||
```shell
|
||||
export SENTRY_DSN="your-sentry-dsn"
|
||||
```
|
||||
|
@ -1435,11 +1438,13 @@ general_settings:
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```
|
||||
litellm --test
|
||||
```
|
||||
|
@ -1457,6 +1462,7 @@ ATHINA_API_KEY = "your-athina-api-key"
|
|||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1469,11 +1475,13 @@ litellm_settings:
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -1505,6 +1513,7 @@ AZURE_CONTENT_SAFETY_KEY = "<your-azure-content-safety-key>"
|
|||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -1520,11 +1529,13 @@ litellm_settings:
|
|||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
|
||||
```
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
|
@ -1541,6 +1552,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
An HTTP 400 error will be returned if the content is detected with a value greater than the threshold set in the `config.yaml`.
|
||||
The details of the response will describe:
|
||||
|
||||
- The `source` : input text or llm generated text
|
||||
- The `category` : the category of the content that triggered the moderation
|
||||
- The `severity` : the severity from 0 to 10
|
||||
|
|
|
@ -2796,7 +2796,7 @@ async def chat_completion(
|
|||
|
||||
## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call
|
||||
## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse.
|
||||
data["litellm_call_id"] = str(uuid.uuid4())
|
||||
data["litellm_call_id"] = request.headers.get('x-litellm-call-id', str(uuid.uuid4()))
|
||||
logging_obj, data = litellm.utils.function_setup(
|
||||
original_function="acompletion",
|
||||
rules_obj=litellm.utils.Rules(),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue