forked from phoenix/litellm-mirror
docs(vertex.md): refactor docs
This commit is contained in:
parent
353558e978
commit
7bc9f1299c
1 changed files with 90 additions and 91 deletions
|
@ -572,6 +572,96 @@ Here's how to use Vertex AI with the LiteLLM Proxy Server
|
||||||
|
|
||||||
</Tabs>
|
</Tabs>
|
||||||
|
|
||||||
|
|
||||||
|
## Authentication - vertex_project, vertex_location, etc.
|
||||||
|
|
||||||
|
Set your vertex credentials via:
|
||||||
|
- dynamic params
|
||||||
|
OR
|
||||||
|
- env vars
|
||||||
|
|
||||||
|
|
||||||
|
### **Dynamic Params**
|
||||||
|
|
||||||
|
You can set:
|
||||||
|
- `vertex_credentials` (str) - can be a json string or filepath to your vertex ai service account.json
|
||||||
|
- `vertex_location` (str) - place where vertex model is deployed (us-central1, asia-southeast1, etc.)
|
||||||
|
- `vertex_project` Optional[str] - use if vertex project different from the one in vertex_credentials
|
||||||
|
|
||||||
|
as dynamic params for a `litellm.completion` call.
|
||||||
|
|
||||||
|
<Tabs>
|
||||||
|
<TabItem value="sdk" label="SDK">
|
||||||
|
|
||||||
|
```python
|
||||||
|
from litellm import completion
|
||||||
|
import json
|
||||||
|
|
||||||
|
## GET CREDENTIALS
|
||||||
|
file_path = 'path/to/vertex_ai_service_account.json'
|
||||||
|
|
||||||
|
# Load the JSON file
|
||||||
|
with open(file_path, 'r') as file:
|
||||||
|
vertex_credentials = json.load(file)
|
||||||
|
|
||||||
|
# Convert to JSON string
|
||||||
|
vertex_credentials_json = json.dumps(vertex_credentials)
|
||||||
|
|
||||||
|
|
||||||
|
response = completion(
|
||||||
|
model="vertex_ai/gemini-pro",
|
||||||
|
messages=[{"content": "You are a good bot.","role": "system"}, {"content": "Hello, how are you?","role": "user"}],
|
||||||
|
vertex_credentials=vertex_credentials_json,
|
||||||
|
vertex_project="my-special-project",
|
||||||
|
vertex_location="my-special-location"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
<TabItem value="proxy" label="PROXY">
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
model_list:
|
||||||
|
- model_name: gemini-1.5-pro
|
||||||
|
litellm_params:
|
||||||
|
model: gemini-1.5-pro
|
||||||
|
vertex_credentials: os.environ/VERTEX_FILE_PATH_ENV_VAR # os.environ["VERTEX_FILE_PATH_ENV_VAR"] = "/path/to/service_account.json"
|
||||||
|
vertex_project: "my-special-project"
|
||||||
|
vertex_location: "my-special-location:
|
||||||
|
```
|
||||||
|
|
||||||
|
</TabItem>
|
||||||
|
</Tabs>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### **Environment Variables**
|
||||||
|
|
||||||
|
You can set:
|
||||||
|
- `GOOGLE_APPLICATION_CREDENTIALS` - store the filepath for your service_account.json in here (used by vertex sdk directly).
|
||||||
|
- VERTEXAI_LOCATION - place where vertex model is deployed (us-central1, asia-southeast1, etc.)
|
||||||
|
- VERTEXAI_PROJECT - Optional[str] - use if vertex project different from the one in vertex_credentials
|
||||||
|
|
||||||
|
1. GOOGLE_APPLICATION_CREDENTIALS
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service_account.json"
|
||||||
|
```
|
||||||
|
|
||||||
|
2. VERTEXAI_LOCATION
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export VERTEXAI_LOCATION="us-central1" # can be any vertex location
|
||||||
|
```
|
||||||
|
|
||||||
|
3. VERTEXAI_PROJECT
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export VERTEXAI_PROJECT="my-test-project" # ONLY use if model project is different from service account project
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
## Specifying Safety Settings
|
## Specifying Safety Settings
|
||||||
In certain use-cases you may need to make calls to the models and pass [safety settigns](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
|
In certain use-cases you may need to make calls to the models and pass [safety settigns](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
|
||||||
|
|
||||||
|
@ -2303,97 +2393,6 @@ print("response from proxy", response)
|
||||||
</TabItem>
|
</TabItem>
|
||||||
</Tabs>
|
</Tabs>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Authentication - vertex_project, vertex_location, etc.
|
|
||||||
|
|
||||||
Set your vertex credentials via:
|
|
||||||
- dynamic params
|
|
||||||
OR
|
|
||||||
- env vars
|
|
||||||
|
|
||||||
|
|
||||||
### **Dynamic Params**
|
|
||||||
|
|
||||||
You can set:
|
|
||||||
- `vertex_credentials` (str) - can be a json string or filepath to your vertex ai service account.json
|
|
||||||
- `vertex_location` (str) - place where vertex model is deployed (us-central1, asia-southeast1, etc.)
|
|
||||||
- `vertex_project` Optional[str] - use if vertex project different from the one in vertex_credentials
|
|
||||||
|
|
||||||
as dynamic params for a `litellm.completion` call.
|
|
||||||
|
|
||||||
<Tabs>
|
|
||||||
<TabItem value="sdk" label="SDK">
|
|
||||||
|
|
||||||
```python
|
|
||||||
from litellm import completion
|
|
||||||
import json
|
|
||||||
|
|
||||||
## GET CREDENTIALS
|
|
||||||
file_path = 'path/to/vertex_ai_service_account.json'
|
|
||||||
|
|
||||||
# Load the JSON file
|
|
||||||
with open(file_path, 'r') as file:
|
|
||||||
vertex_credentials = json.load(file)
|
|
||||||
|
|
||||||
# Convert to JSON string
|
|
||||||
vertex_credentials_json = json.dumps(vertex_credentials)
|
|
||||||
|
|
||||||
|
|
||||||
response = completion(
|
|
||||||
model="vertex_ai/gemini-pro",
|
|
||||||
messages=[{"content": "You are a good bot.","role": "system"}, {"content": "Hello, how are you?","role": "user"}],
|
|
||||||
vertex_credentials=vertex_credentials_json,
|
|
||||||
vertex_project="my-special-project",
|
|
||||||
vertex_location="my-special-location"
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
</TabItem>
|
|
||||||
<TabItem value="proxy" label="PROXY">
|
|
||||||
|
|
||||||
```yaml
|
|
||||||
model_list:
|
|
||||||
- model_name: gemini-1.5-pro
|
|
||||||
litellm_params:
|
|
||||||
model: gemini-1.5-pro
|
|
||||||
vertex_credentials: os.environ/VERTEX_FILE_PATH_ENV_VAR # os.environ["VERTEX_FILE_PATH_ENV_VAR"] = "/path/to/service_account.json"
|
|
||||||
vertex_project: "my-special-project"
|
|
||||||
vertex_location: "my-special-location:
|
|
||||||
```
|
|
||||||
|
|
||||||
</TabItem>
|
|
||||||
</Tabs>
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### **Environment Variables**
|
|
||||||
|
|
||||||
You can set:
|
|
||||||
- `GOOGLE_APPLICATION_CREDENTIALS` - store the filepath for your service_account.json in here (used by vertex sdk directly).
|
|
||||||
- VERTEXAI_LOCATION - place where vertex model is deployed (us-central1, asia-southeast1, etc.)
|
|
||||||
- VERTEXAI_PROJECT - Optional[str] - use if vertex project different from the one in vertex_credentials
|
|
||||||
|
|
||||||
1. GOOGLE_APPLICATION_CREDENTIALS
|
|
||||||
|
|
||||||
```bash
|
|
||||||
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service_account.json"
|
|
||||||
```
|
|
||||||
|
|
||||||
2. VERTEXAI_LOCATION
|
|
||||||
|
|
||||||
```bash
|
|
||||||
export VERTEXAI_LOCATION="us-central1" # can be any vertex location
|
|
||||||
```
|
|
||||||
|
|
||||||
3. VERTEXAI_PROJECT
|
|
||||||
|
|
||||||
```bash
|
|
||||||
export VERTEXAI_PROJECT="my-test-project" # ONLY use if model project is different from service account project
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Extra
|
## Extra
|
||||||
|
|
||||||
### Using `GOOGLE_APPLICATION_CREDENTIALS`
|
### Using `GOOGLE_APPLICATION_CREDENTIALS`
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue