test: update tests

This commit is contained in:
Krrish Dholakia 2024-11-30 12:43:45 -08:00
parent d72407515c
commit 7bdc940588
8 changed files with 199 additions and 248 deletions

View file

@ -1 +1,3 @@
More tests under `litellm/litellm/tests/*`.
Unit tests for individual LLM providers.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.

View file

@ -42,7 +42,6 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
"""
@ -87,7 +86,6 @@ async def test_bedrock_max_completion_tokens(model: str):
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str):
"""

View file

@ -19,7 +19,6 @@ from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
@pytest.mark.respx
def test_completion_nvidia_nim():
from openai import OpenAI

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch
sys.path.insert(
0, os.path.abspath("../..")
@ -63,8 +63,7 @@ def test_openai_prediction_param():
@pytest.mark.asyncio
@pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
async def test_openai_prediction_param_mock():
"""
Tests that prediction parameter is correctly passed to the API
"""
@ -92,38 +91,15 @@ async def test_openai_prediction_param_mock(respx_mock: MockRouter):
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
)
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
completion = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
@ -133,20 +109,19 @@ async def test_openai_prediction_param_mock(respx_mock: MockRouter):
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
@pytest.mark.asyncio
async def test_openai_prediction_param_with_caching():
@ -223,3 +198,80 @@ async def test_openai_prediction_param_with_caching():
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch, MagicMock
sys.path.insert(
0, os.path.abspath("../..")
@ -18,87 +18,75 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
async def test_o1_handle_system_role():
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == "o1-preview"
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
async def test_o1_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == model
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
def test_litellm_responses():

View file

@ -1,94 +0,0 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,6 +6,7 @@ from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -68,13 +69,16 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
async def test_huggingface_text_completion_logprobs():
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
@ -91,19 +95,21 @@ async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
}
]
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val = AsyncMock()
return_val.json.return_value = mock_response
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
client=client,
)
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},

View file

@ -33,7 +33,7 @@ from litellm.router import Router
@pytest.mark.asyncio()
@pytest.mark.respx()
async def test_azure_tenant_id_auth(respx_mock: MockRouter):
async def test_aaaaazure_tenant_id_auth(respx_mock: MockRouter):
"""
Tests when we set tenant_id, client_id, client_secret they don't get sent with the request