Merge branch 'main' into main

This commit is contained in:
Vince Loewe 2024-03-11 12:36:41 +09:00 committed by GitHub
commit 7c38f992dc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
160 changed files with 7414 additions and 1644 deletions

View file

@ -45,6 +45,8 @@ jobs:
pip install "asyncio==3.4.3"
pip install "apscheduler==3.10.4"
pip install "PyGithub==1.59.1"
pip install argon2-cffi
pip install python-multipart
- save_cache:
paths:
- ./venv
@ -88,6 +90,32 @@ jobs:
- store_test_results:
path: test-results
installing_litellm_on_python:
docker:
- image: circleci/python:3.8
working_directory: ~/project
steps:
- checkout
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
pip install python-dotenv
pip install pytest
pip install tiktoken
pip install aiohttp
pip install click
pip install jinja2
pip install tokenizers
pip install openai
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv litellm/tests/test_python_38.py
build_and_test:
machine:
image: ubuntu-2204:2023.10.1
@ -276,6 +304,12 @@ workflows:
only:
- main
- /litellm_.*/
- installing_litellm_on_python:
filters:
branches:
only:
- main
- /litellm_.*/
- publish_to_pypi:
requires:
- local_testing

View file

@ -146,9 +146,29 @@ jobs:
} catch (error) {
core.setFailed(error.message);
}
- name: Fetch Release Notes
id: release-notes
uses: actions/github-script@v6
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
script: |
try {
const response = await github.rest.repos.getRelease({
owner: context.repo.owner,
repo: context.repo.repo,
release_id: process.env.RELEASE_ID,
});
return response.data.body;
} catch (error) {
core.setFailed(error.message);
}
env:
RELEASE_ID: ${{ env.RELEASE_ID }}
- name: Github Releases To Discord
env:
WEBHOOK_URL: ${{ secrets.WEBHOOK_URL }}
REALEASE_TAG: ${{ env.RELEASE_TAG }}
RELEASE_NOTES: ${{ steps.release-notes.outputs.result }}
run: |
curl -H "Content-Type: application/json" -X POST -d '{
"content": "||@everyone||",
@ -156,8 +176,8 @@ jobs:
"avatar_url": "https://cdn.discordapp.com/avatars/487431320314576937/bd64361e4ba6313d561d54e78c9e7171.png",
"embeds": [
{
"title": "Changelog",
"description": "This is the changelog for the latest release.",
"title": "Changelog for ${RELEASE_TAG}",
"description": "${RELEASE_NOTES}",
"color": 2105893
}
]

1
.gitignore vendored
View file

@ -44,3 +44,4 @@ deploy/charts/litellm/*.tgz
deploy/charts/litellm/charts/*
deploy/charts/*.tgz
litellm/proxy/vertex_key.json
**/.vim/

View file

@ -61,4 +61,7 @@ RUN chmod +x entrypoint.sh
EXPOSE 4000/tcp
ENTRYPOINT ["litellm"]
CMD ["--port", "4000", "--config", "./proxy_server_config.yaml", "--detailed_debug", "--run_gunicorn"]
# Append "--detailed_debug" to the end of CMD to view detailed debug logs
# CMD ["--port", "4000", "--config", "./proxy_server_config.yaml", "--run_gunicorn", "--detailed_debug"]
CMD ["--port", "4000", "--config", "./proxy_server_config.yaml", "--run_gunicorn"]

View file

@ -65,4 +65,7 @@ EXPOSE 4000/tcp
# # Set your entrypoint and command
ENTRYPOINT ["litellm"]
# Append "--detailed_debug" to the end of CMD to view detailed debug logs
# CMD ["--port", "4000","--run_gunicorn", "--detailed_debug"]
CMD ["--port", "4000", "--run_gunicorn"]

View file

@ -148,14 +148,14 @@ pip install 'litellm[proxy]'
```shell
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
### Step 2: Make ChatCompletions Request to Proxy
```python
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
@ -178,7 +178,7 @@ Set budgets and rate limits across multiple projects
### Request
```shell
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'
@ -259,6 +259,19 @@ Step 4: Submit a PR with your changes! 🚀
- push your fork to your GitHub repo
- submit a PR from there
# Enterprise
For companies that need better security, user management and professional support
[Talk to founders](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
This covers:
- ✅ **Features under the [LiteLLM Commercial License](https://docs.litellm.ai/docs/proxy/enterprise):**
- ✅ **Feature Prioritization**
- ✅ **Custom Integrations**
- ✅ **Professional Support - Dedicated discord + slack**
- ✅ **Custom SLAs**
- ✅ **Secure access with Single Sign-On**
# Support / talk with founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)

View file

@ -0,0 +1,70 @@
from fastapi import FastAPI
import uvicorn
from memory_profiler import profile, memory_usage
import os
import traceback
import asyncio
import pytest
import litellm
from litellm import Router
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from dotenv import load_dotenv
import uuid
load_dotenv()
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "text-embedding-ada-002",
"litellm_params": {
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 100000,
"rpm": 10000,
},
]
litellm.set_verbose = True
litellm.cache = litellm.Cache(
type="s3", s3_bucket_name="litellm-my-test-bucket-2", s3_region_name="us-east-1"
)
router = Router(model_list=model_list, set_verbose=True)
app = FastAPI()
@app.get("/")
async def read_root():
return {"message": "Welcome to the FastAPI endpoint!"}
@profile
@app.post("/router_acompletion")
async def router_acompletion():
question = f"This is a test: {uuid.uuid4()}" * 100
resp = await router.aembedding(model="text-embedding-ada-002", input=question)
print("embedding-resp", resp)
response = await router.acompletion(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}]
)
print("completion-resp", response)
return response
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)

View file

@ -0,0 +1,92 @@
#### What this tests ####
from memory_profiler import profile, memory_usage
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from dotenv import load_dotenv
import uuid
load_dotenv()
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "text-embedding-ada-002",
"litellm_params": {
"model": "azure/azure-embedding-model",
"api_key": os.environ["AZURE_API_KEY"],
"api_base": os.environ["AZURE_API_BASE"],
},
"tpm": 100000,
"rpm": 10000,
},
]
litellm.set_verbose = True
litellm.cache = litellm.Cache(
type="s3", s3_bucket_name="litellm-my-test-bucket-2", s3_region_name="us-east-1"
)
router = Router(
model_list=model_list,
set_verbose=True,
) # type: ignore
@profile
async def router_acompletion():
# embedding call
question = f"This is a test: {uuid.uuid4()}" * 100
resp = await router.aembedding(model="text-embedding-ada-002", input=question)
print("embedding-resp", resp)
response = await router.acompletion(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}]
)
print("completion-resp", response)
return response
async def main():
for i in range(1):
start = time.time()
n = 50 # Number of concurrent tasks
tasks = [router_acompletion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
time.sleep(10)
if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()
asyncio.run(main())

View file

@ -0,0 +1,92 @@
#### What this tests ####
from memory_profiler import profile, memory_usage
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from dotenv import load_dotenv
import uuid
load_dotenv()
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "text-embedding-ada-002",
"litellm_params": {
"model": "azure/azure-embedding-model",
"api_key": os.environ["AZURE_API_KEY"],
"api_base": os.environ["AZURE_API_BASE"],
},
"tpm": 100000,
"rpm": 10000,
},
]
litellm.set_verbose = True
litellm.cache = litellm.Cache(
type="s3", s3_bucket_name="litellm-my-test-bucket-2", s3_region_name="us-east-1"
)
router = Router(
model_list=model_list,
set_verbose=True,
) # type: ignore
@profile
async def router_acompletion():
# embedding call
question = f"This is a test: {uuid.uuid4()}" * 100
resp = await router.aembedding(model="text-embedding-ada-002", input=question)
print("embedding-resp", resp)
response = await router.acompletion(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}]
)
print("completion-resp", response)
return response
async def main():
for i in range(1):
start = time.time()
n = 50 # Number of concurrent tasks
tasks = [router_acompletion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
time.sleep(10)
if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()
asyncio.run(main())

View file

@ -0,0 +1,28 @@
import requests
from concurrent.futures import ThreadPoolExecutor
# Replace the URL with your actual endpoint
url = "http://localhost:8000/router_acompletion"
def make_request(session):
headers = {"Content-Type": "application/json"}
data = {} # Replace with your JSON payload if needed
response = session.post(url, headers=headers, json=data)
print(f"Status code: {response.status_code}")
# Number of concurrent requests
num_requests = 20
# Create a session to reuse the underlying TCP connection
with requests.Session() as session:
# Use ThreadPoolExecutor for concurrent requests
with ThreadPoolExecutor(max_workers=num_requests) as executor:
# Use list comprehension to submit tasks
futures = [executor.submit(make_request, session) for _ in range(num_requests)]
# Wait for all futures to complete
for future in futures:
future.result()

View file

@ -1,6 +1,9 @@
dependencies:
- name: postgresql
repository: oci://registry-1.docker.io/bitnamicharts
version: 13.3.1
digest: sha256:f5c129150f0d38dd06752ab37f3c8e143d7c14d30379af058767bcd9f4ba83dd
generated: "2024-01-19T11:32:56.694808861+11:00"
version: 14.3.1
- name: redis
repository: oci://registry-1.docker.io/bitnamicharts
version: 18.19.1
digest: sha256:8660fe6287f9941d08c0902f3f13731079b8cecd2a5da2fbc54e5b7aae4a6f62
generated: "2024-03-10T02:28:52.275022+05:30"

View file

@ -31,3 +31,7 @@ dependencies:
version: ">=13.3.0"
repository: oci://registry-1.docker.io/bitnamicharts
condition: db.deployStandalone
- name: redis
version: ">=18.0.0"
repository: oci://registry-1.docker.io/bitnamicharts
condition: redis.enabled

View file

@ -28,7 +28,7 @@ If `db.useStackgresOperator` is used (not yet implemented):
| `imagePullSecrets` | Registry credentials for the LiteLLM and initContainer images. | `[]` |
| `serviceAccount.create` | Whether or not to create a Kubernetes Service Account for this deployment. The default is `false` because LiteLLM has no need to access the Kubernetes API. | `false` |
| `service.type` | Kubernetes Service type (e.g. `LoadBalancer`, `ClusterIP`, etc.) | `ClusterIP` |
| `service.port` | TCP port that the Kubernetes Service will listen on. Also the TCP port within the Pod that the proxy will listen on. | `8000` |
| `service.port` | TCP port that the Kubernetes Service will listen on. Also the TCP port within the Pod that the proxy will listen on. | `4000` |
| `ingress.*` | See [values.yaml](./values.yaml) for example settings | N/A |
| `proxy_config.*` | See [values.yaml](./values.yaml) for default settings. See [example_config_yaml](../../../litellm/proxy/example_config_yaml/) for configuration examples. | N/A |
@ -76,7 +76,7 @@ When browsing to the URL published per the settings in `ingress.*`, you will
be prompted for **Admin Configuration**. The **Proxy Endpoint** is the internal
(from the `litellm` pod's perspective) URL published by the `<RELEASE>-litellm`
Kubernetes Service. If the deployment uses the default settings for this
service, the **Proxy Endpoint** should be set to `http://<RELEASE>-litellm:8000`.
service, the **Proxy Endpoint** should be set to `http://<RELEASE>-litellm:4000`.
The **Proxy Key** is the value specified for `masterkey` or, if a `masterkey`
was not provided to the helm command line, the `masterkey` is a randomly

View file

@ -60,3 +60,25 @@ Create the name of the service account to use
{{- default "default" .Values.serviceAccount.name }}
{{- end }}
{{- end }}
{{/*
Get redis service name
*/}}
{{- define "litellm.redis.serviceName" -}}
{{- if and (eq .Values.redis.architecture "standalone") .Values.redis.sentinel.enabled -}}
{{- printf "%s-%s" .Release.Name (default "redis" .Values.redis.nameOverride | trunc 63 | trimSuffix "-") -}}
{{- else -}}
{{- printf "%s-%s-master" .Release.Name (default "redis" .Values.redis.nameOverride | trunc 63 | trimSuffix "-") -}}
{{- end -}}
{{- end -}}
{{/*
Get redis service port
*/}}
{{- define "litellm.redis.port" -}}
{{- if .Values.redis.sentinel.enabled -}}
{{ .Values.redis.sentinel.service.ports.sentinel }}
{{- else -}}
{{ .Values.redis.master.service.ports.redis }}
{{- end -}}
{{- end -}}

View file

@ -142,6 +142,17 @@ spec:
secretKeyRef:
name: {{ include "litellm.fullname" . }}-masterkey
key: masterkey
{{- if .Values.redis.enabled }}
- name: REDIS_HOST
value: {{ include "litellm.redis.serviceName" . }}
- name: REDIS_PORT
value: {{ include "litellm.redis.port" . | quote }}
- name: REDIS_PASSWORD
valueFrom:
secretKeyRef:
name: {{ include "redis.secretName" .Subcharts.redis }}
key: {{include "redis.secretPasswordKey" .Subcharts.redis }}
{{- end }}
envFrom:
{{- range .Values.environmentSecrets }}
- secretRef:

View file

@ -55,7 +55,7 @@ environmentSecrets: []
service:
type: ClusterIP
port: 8000
port: 4000
ingress:
enabled: false
@ -87,6 +87,8 @@ proxy_config:
api_key: eXaMpLeOnLy
general_settings:
master_key: os.environ/PROXY_MASTER_KEY
# litellm_settings:
# cache: true
resources: {}
# We usually recommend not to specify default resources and to leave this as a conscious
@ -166,3 +168,10 @@ postgresql:
# existingSecret: ""
# secretKeys:
# userPasswordKey: password
# requires cache: true in config file
# either enable this or pass a secret for REDIS_HOST, REDIS_PORT, REDIS_PASSWORD or REDIS_URL
# with cache: true to use existing redis instance
redis:
enabled: false
architecture: standalone

View file

@ -8,13 +8,3 @@ services:
- "4000:4000"
environment:
- AZURE_API_KEY=sk-123
clickhouse:
image: clickhouse/clickhouse-server
environment:
- CLICKHOUSE_DB=litellm-test
- CLICKHOUSE_USER=admin
- CLICKHOUSE_DEFAULT_ACCESS_MANAGEMENT=1
- CLICKHOUSE_PASSWORD=admin
ports:
- "8123:8123"

View file

@ -0,0 +1,85 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Audio Transcription
Use this to loadbalance across Azure + OpenAI.
## Quick Start
```python
from litellm import transcription
import os
# set api keys
os.environ["OPENAI_API_KEY"] = ""
audio_file = open("/path/to/audio.mp3", "rb")
response = transcription(model="whisper", file=audio_file)
print(f"response: {response}")
```
## Proxy Usage
### Add model to config
<Tabs>
<TabItem value="openai" label="OpenAI">
```yaml
model_list:
- model_name: whisper
litellm_params:
model: whisper-1
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
```
</TabItem>
<TabItem value="openai+azure" label="OpenAI + Azure">
```yaml
model_list:
- model_name: whisper
litellm_params:
model: whisper-1
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
- model_name: whisper
litellm_params:
model: azure/azure-whisper
api_version: 2024-02-15-preview
api_base: os.environ/AZURE_EUROPE_API_BASE
api_key: os.environ/AZURE_EUROPE_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
```
</TabItem>
</Tabs>
### Start proxy
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:8000
```
### Test
```bash
curl --location 'http://0.0.0.0:4000/v1/audio/transcriptions' \
--header 'Authorization: Bearer sk-1234' \
--form 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \
--form 'model="whisper"'
```

View file

@ -24,6 +24,17 @@ print(response)
```
### Translated OpenAI params
Use this function to get an up-to-date list of supported openai params for any model + provider.
```python
from litellm import get_supported_openai_params
response = get_supported_openai_params(model="anthropic.claude-3", custom_llm_provider="bedrock")
print(response) # ["max_tokens", "tools", "tool_choice", "stream"]
```
This is a list of openai params we translate across providers.
This list is constantly being updated.

View file

@ -1,3 +1,6 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Embedding Models
## Quick Start
@ -7,8 +10,81 @@ import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
```
## Proxy Usage
### Input Params for `litellm.embedding()`
**NOTE**
For `vertex_ai`,
```bash
export GOOGLE_APPLICATION_CREDENTIALS="absolute/path/to/service_account.json"
```
### Add model to config
```yaml
model_list:
- model_name: textembedding-gecko
litellm_params:
model: vertex_ai/textembedding-gecko
general_settings:
master_key: sk-1234
```
### Start proxy
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
### Test
<Tabs>
<TabItem value="curl" label="Curl">
```bash
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"input": ["Academia.edu uses"], "model": "textembedding-gecko", "encoding_format": "base64"}'
```
</TabItem>
<TabItem value="openai" label="OpenAI (python)">
```python
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
client.embeddings.create(
model="textembedding-gecko",
input="The food was delicious and the waiter...",
encoding_format="float"
)
```
</TabItem>
<TabItem value="langchain" label="Langchain Embeddings">
```python
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="textembedding-gecko", openai_api_base="http://0.0.0.0:4000", openai_api_key="sk-1234")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"VERTEX AI EMBEDDINGS")
print(query_result[:5])
```
</TabItem>
</Tabs>
## Input Params for `litellm.embedding()`
### Required Fields
- `model`: *string* - ID of the model to use. `model='text-embedding-ada-002'`
@ -124,7 +200,7 @@ Use this for calling `/embedding` endpoints on OpenAI Compatible Servers, exampl
from litellm import embedding
response = embedding(
model = "openai/<your-llm-name>", # add `openai/` prefix to model so litellm knows to route to OpenAI
api_base="http://0.0.0.0:8000/" # set API Base of your Custom OpenAI Endpoint
api_base="http://0.0.0.0:4000/" # set API Base of your Custom OpenAI Endpoint
input=["good morning from litellm"]
)
```
@ -235,6 +311,35 @@ print(response)
| mistral-embed | `embedding(model="mistral/mistral-embed", input)` |
## Vertex AI Embedding Models
### Usage - Embedding
```python
import litellm
from litellm import embedding
litellm.vertex_project = "hardy-device-38811" # Your Project ID
litellm.vertex_location = "us-central1" # proj location
os.environ['VOYAGE_API_KEY'] = ""
response = embedding(
model="vertex_ai/textembedding-gecko",
input=["good morning from litellm"],
)
print(response)
```
## Supported Models
All models listed [here](https://github.com/BerriAI/litellm/blob/57f37f743886a0249f630a6792d49dffc2c5d9b7/model_prices_and_context_window.json#L835) are supported
| Model Name | Function Call |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| textembedding-gecko | `embedding(model="vertex_ai/textembedding-gecko", input)` |
| textembedding-gecko-multilingual | `embedding(model="vertex_ai/textembedding-gecko-multilingual", input)` |
| textembedding-gecko-multilingual@001 | `embedding(model="vertex_ai/textembedding-gecko-multilingual@001", input)` |
| textembedding-gecko@001 | `embedding(model="vertex_ai/textembedding-gecko@001", input)` |
| textembedding-gecko@003 | `embedding(model="vertex_ai/textembedding-gecko@003", input)` |
## Voyage AI Embedding Models
### Usage - Embedding

View file

@ -12,7 +12,14 @@ https://github.com/BerriAI/litellm
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
- Track spend & set budgets per project [OpenAI Proxy Server](https://docs.litellm.ai/docs/simple_proxy)
## Basic usage
## How to use LiteLLM
You can use litellm through either:
1. [OpenAI proxy Server](#openai-proxy) - Server to call 100+ LLMs, load balance, cost tracking across projects
2. [LiteLLM python SDK](#basic-usage) - Python Client to call 100+ LLMs, load balance, cost tracking
## LiteLLM Python SDK
### Basic usage
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/liteLLM_Getting_Started.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
@ -146,9 +153,9 @@ response = completion(
</Tabs>
## Streaming
### Streaming
Set `stream=True` in the `completion` args.
Set `stream=True` in the `completion` args.
<Tabs>
<TabItem value="openai" label="OpenAI">
@ -280,7 +287,7 @@ response = completion(
</Tabs>
## Exception handling
### Exception handling
LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.
@ -296,8 +303,7 @@ except OpenAIError as e:
print(e)
```
## Logging Observability - Log LLM Input/Output ([Docs](https://docs.litellm.ai/docs/observability/callbacks))
### Logging Observability - Log LLM Input/Output ([Docs](https://docs.litellm.ai/docs/observability/callbacks))
LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack
```python
@ -317,8 +323,7 @@ litellm.success_callback = ["lunary", "langfuse"] # log input/output to lunary,
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
```
## Track Costs, Usage, Latency for streaming
### Track Costs, Usage, Latency for streaming
Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback
```python
@ -377,14 +382,14 @@ pip install 'litellm[proxy]'
```shell
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
#### Step 2: Make ChatCompletions Request to Proxy
```python
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{

View file

@ -1,5 +1,84 @@
import Image from '@theme/IdealImage';
# 🔥 Load Test LiteLLM
## Load Test LiteLLM Proxy - 1500+ req/s
## 1500+ concurrent requests/s
LiteLLM proxy has been load tested to handle 1500+ concurrent req/s
```python
import time, asyncio
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback
# base_url - litellm proxy endpoint
# api_key - litellm proxy api-key, is created proxy with auth
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="azure-gpt-3.5",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
print(response)
return response
except Exception as e:
# If there's an exception, log the error message
with open("error_log.txt", "a") as error_log:
error_log.write(f"Error during completion: {str(e)}\n")
pass
async def main():
for i in range(1):
start = time.time()
n = 1500 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
time.sleep(10)
if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()
asyncio.run(main())
```
### Throughput - 30% Increase
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
<Image img={require('../img/throughput.png')} />
### Latency Added - 0.00325 seconds
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
<Image img={require('../img/latency.png')} />
### Testing LiteLLM Proxy with Locust
- 1 LiteLLM container can handle ~140 requests/second with 0.4 failures
<Image img={require('../img/locust.png')} />
## Load Test LiteLLM SDK vs OpenAI
Here is a script to load test LiteLLM vs OpenAI
```python
@ -11,7 +90,7 @@ import time, asyncio, litellm
#### LITELLM PROXY ####
litellm_client = AsyncOpenAI(
api_key="sk-1234", # [CHANGE THIS]
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
#### AZURE OPENAI CLIENT ####
@ -84,4 +163,5 @@ async def loadtest_fn():
# Run the event loop to execute the async function
asyncio.run(loadtest_fn())
```
```

View file

@ -1,9 +1,12 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Anthropic
LiteLLM supports
- `claude-3` (`claude-3-opus-20240229`, `claude-3-sonnet-20240229`)
- `claude-2`
- `claude-2.1`
- `claude-instant-1`
- `claude-instant-1.2`
## API Keys
@ -24,11 +27,217 @@ from litellm import completion
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
messages = [{"role": "user", "content": "Hey! how's it going?"}]
response = completion(model="claude-instant-1", messages=messages)
response = completion(model="claude-3-opus-20240229", messages=messages)
print(response)
```
## Usage - "Assistant Pre-fill"
## Usage - Streaming
Just set `stream=True` when calling completion.
```python
import os
from litellm import completion
# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
messages = [{"role": "user", "content": "Hey! how's it going?"}]
response = completion(model="claude-3-opus-20240229", messages=messages, stream=True)
for chunk in response:
print(chunk["choices"][0]["delta"]["content"]) # same as openai format
```
## OpenAI Proxy Usage
Here's how to call Anthropic with the LiteLLM Proxy Server
### 1. Save key in your environment
```bash
export ANTHROPIC_API_KEY="your-api-key"
```
### 2. Start the proxy
```bash
$ litellm --model claude-3-opus-20240229
# Server running on http://0.0.0.0:4000
```
### 3. Test it
<Tabs>
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
```
</TabItem>
<TabItem value="openai" label="OpenAI v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Supported Models
| Model Name | Function Call |
|------------------|--------------------------------------------|
| claude-3-opus | `completion('claude-3-opus-20240229', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-3-sonnet | `completion('claude-3-sonnet-20240229', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-2.1 | `completion('claude-2.1', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-2 | `completion('claude-2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-instant-1.2 | `completion('claude-instant-1.2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-instant-1 | `completion('claude-instant-1', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
## Advanced
## Usage - Function Calling
```python
from litellm import completion
# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
```
## Usage - Vision
```python
from litellm import completion
# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="anthropic/claude-3-opus-20240229",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(f"\nResponse: {resp}")
```
### Usage - "Assistant Pre-fill"
You can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
@ -50,7 +259,7 @@ response = completion(model="claude-2.1", messages=messages)
print(response)
```
### Example prompt sent to Claude
#### Example prompt sent to Claude
```
@ -61,7 +270,7 @@ Human: How do you say 'Hello' in German? Return your answer as a JSON object, li
Assistant: {
```
## Usage - "System" messages
### Usage - "System" messages
If you're using Anthropic's Claude 2.1 with Bedrock, `system` role messages are properly formatted for you.
```python
@ -78,7 +287,7 @@ messages = [
response = completion(model="claude-2.1", messages=messages)
```
### Example prompt sent to Claude
#### Example prompt sent to Claude
```
You are a snarky assistant.
@ -88,28 +297,3 @@ Human: How do I boil water?
Assistant:
```
## Streaming
Just set `stream=True` when calling completion.
```python
import os
from litellm import completion
# set env
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
messages = [{"role": "user", "content": "Hey! how's it going?"}]
response = completion(model="claude-instant-1", messages=messages, stream=True)
for chunk in response:
print(chunk["choices"][0]["delta"]["content"]) # same as openai format
```
### Model Details
| Model Name | Function Call | Required OS Variables |
|------------------|--------------------------------------------|--------------------------------------|
| claude-2.1 | `completion('claude-2.1', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-2 | `completion('claude-2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-instant-1 | `completion('claude-instant-1', messages)` | `os.environ['ANTHROPIC_API_KEY']` |
| claude-instant-1.2 | `completion('claude-instant-1.2', messages)` | `os.environ['ANTHROPIC_API_KEY']` |

View file

@ -3,9 +3,9 @@
api_key, api_base, api_version etc can be passed directly to `litellm.completion` - see here or set as `litellm.api_key` params see here
```python
import os
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
os.environ["AZURE_API_KEY"] = "" # "my-azure-api-key"
os.environ["AZURE_API_BASE"] = "" # "https://example-endpoint.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "" # "2023-05-15"
# optional
os.environ["AZURE_AD_TOKEN"] = ""
@ -168,6 +168,13 @@ response = completion(
)
```
## Azure Instruct Models
| Model Name | Function Call |
|---------------------|----------------------------------------------------|
| gpt-3.5-turbo-instruct | `response = completion(model="azure/<your deployment name>", messages=messages)` |
| gpt-3.5-turbo-instruct-0914 | `response = completion(model="azure/<your deployment name>", messages=messages)` |
## Advanced
### Azure API Load-Balancing

View file

@ -1,3 +1,6 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# AWS Bedrock
Anthropic, Amazon Titan, A121 LLMs are Supported on Bedrock
@ -29,11 +32,193 @@ os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
model="bedrock/anthropic.claude-instant-v1",
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```
## OpenAI Proxy Usage
Here's how to call Anthropic with the LiteLLM Proxy Server
### 1. Save key in your environment
```bash
export AWS_ACCESS_KEY_ID=""
export AWS_SECRET_ACCESS_KEY=""
export AWS_REGION_NAME=""
```
### 2. Start the proxy
```bash
$ litellm --model anthropic.claude-3-sonnet-20240229-v1:0
# Server running on http://0.0.0.0:4000
```
### 3. Test it
<Tabs>
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
```
</TabItem>
<TabItem value="openai" label="OpenAI v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Usage - Function Calling
```python
from litellm import completion
# set env
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
```
## Usage - Vision
```python
from litellm import completion
# set env
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(f"\nResponse: {resp}")
```
## Usage - "Assistant Pre-fill"
If you're using Anthropic's Claude with Bedrock, you can "put words in Claude's mouth" by including an `assistant` role message as the last item in the `messages` array.
@ -286,18 +471,21 @@ response = litellm.embedding(
## Supported AWS Bedrock Models
Here's an example of using a bedrock model with LiteLLM
| Model Name | Command |
|--------------------------|------------------------------------------------------------------|
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| Anthropic Claude-V3 | `completion(model='bedrock/anthropic.claude-3-sonnet-20240229-v1:0', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V2.1 | `completion(model='bedrock/anthropic.claude-v2:1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V2 | `completion(model='bedrock/anthropic.claude-v2', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V2 | `completion(model='bedrock/anthropic.claude-v2', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
| Anthropic Claude-Instant V1 | `completion(model='bedrock/anthropic.claude-instant-v1', messages=messages)` | `os.environ['ANTHROPIC_ACCESS_KEY_ID']`, `os.environ['ANTHROPIC_SECRET_ACCESS_KEY']` |
| Amazon Titan Lite | `completion(model='bedrock/amazon.titan-text-lite-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Amazon Titan Express | `completion(model='bedrock/amazon.titan-text-express-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Cohere Command | `completion(model='bedrock/cohere.command-text-v14', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| AI21 J2-Mid | `completion(model='bedrock/ai21.j2-mid-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Amazon Titan Lite | `completion(model='bedrock/amazon.titan-text-lite-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Amazon Titan Express | `completion(model='bedrock/amazon.titan-text-express-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Cohere Command | `completion(model='bedrock/cohere.command-text-v14', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| AI21 J2-Mid | `completion(model='bedrock/ai21.j2-mid-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| AI21 J2-Ultra | `completion(model='bedrock/ai21.j2-ultra-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Meta Llama 2 Chat 13b | `completion(model='bedrock/meta.llama2-13b-chat-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Meta Llama 2 Chat 70b | `completion(model='bedrock/meta.llama2-70b-chat-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Meta Llama 2 Chat 13b | `completion(model='bedrock/meta.llama2-13b-chat-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Meta Llama 2 Chat 70b | `completion(model='bedrock/meta.llama2-70b-chat-v1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Mistral 7B Instruct | `completion(model='bedrock/mistral.mistral-7b-instruct-v0:2', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Mixtral 8x7B Instruct | `completion(model='bedrock/mistral.mixtral-8x7b-instruct-v0:1', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
## Bedrock Embedding

View file

@ -5,6 +5,12 @@ LiteLLM supports all models from [Ollama](https://github.com/jmorganca/ollama)
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
:::info
We recommend using [ollama_chat](#using-ollama-apichat) for better responses.
:::
## Pre-requisites
Ensure you have your ollama server running
@ -177,7 +183,7 @@ On the docker container run the `test.py` file using `python3 test.py`
```python
import openai
api_base = f"http://0.0.0.0:8000" # base url for server
api_base = f"http://0.0.0.0:4000" # base url for server
openai.api_base = api_base
openai.api_key = "temp-key"

View file

@ -93,6 +93,7 @@ response = completion(
| Model Name | Function Call |
|---------------------|----------------------------------------------------|
| gpt-3.5-turbo-instruct | `response = completion(model="gpt-3.5-turbo-instruct", messages=messages)` |
| gpt-3.5-turbo-instruct-0914 | `response = completion(model="gpt-3.5-turbo-instruct-091", messages=messages)` |
| text-davinci-003 | `response = completion(model="text-davinci-003", messages=messages)` |
| ada-001 | `response = completion(model="ada-001", messages=messages)` |
| curie-001 | `response = completion(model="curie-001", messages=messages)` |

View file

@ -15,7 +15,7 @@ import os
response = litellm.completion(
model="openai/mistral, # add `openai/` prefix to model so litellm knows to route to OpenAI
api_key="sk-1234", # api key to your openai compatible endpoint
api_base="http://0.0.0.0:8000", # set API Base of your Custom OpenAI Endpoint
api_base="http://0.0.0.0:4000", # set API Base of your Custom OpenAI Endpoint
messages=[
{
"role": "user",
@ -35,7 +35,7 @@ import os
response = litellm.embedding(
model="openai/GPT-J", # add `openai/` prefix to model so litellm knows to route to OpenAI
api_key="sk-1234", # api key to your openai compatible endpoint
api_base="http://0.0.0.0:8000", # set API Base of your Custom OpenAI Endpoint
api_base="http://0.0.0.0:4000", # set API Base of your Custom OpenAI Endpoint
input=["good morning from litellm"]
)
print(response)

View file

@ -33,12 +33,16 @@ general_settings:
alerting: ["slack"]
alerting_threshold: 300 # sends alerts if requests hang for 5min+ and responses take 5min+
environment_variables:
SLACK_WEBHOOK_URL: "https://hooks.slack.com/services/<>/<>/<>"
```
Set `SLACK_WEBHOOK_URL` in your proxy env
```shell
SLACK_WEBHOOK_URL: "https://hooks.slack.com/services/<>/<>/<>"
```
### Step 3: Start proxy
```bash
$ litellm /path/to/config.yaml
$ litellm --config /path/to/config.yaml
```

View file

@ -0,0 +1,61 @@
import Image from '@theme/IdealImage';
# 🚨 Budget Alerting
**Alerts when a project will exceed its planned limit**
<Image img={require('../../img/budget_alerts.png')} />
## Quick Start
### 1. Setup Slack Alerting on your Proxy Config.yaml
**Add Slack Webhook to your env**
Get a slack webhook url from https://api.slack.com/messaging/webhooks
Set `SLACK_WEBHOOK_URL` in your proxy env
```shell
export SLACK_WEBHOOK_URL="https://hooks.slack.com/services/<>/<>/<>"
```
**Update proxy config.yaml with slack alerting**
Add `general_settings:alerting`
```yaml
model_list:
model_name: "azure-model"
litellm_params:
model: "azure/gpt-35-turbo"
general_settings:
alerting: ["slack"]
```
Start proxy
```bash
$ litellm --config /path/to/config.yaml
```
### 2. Create API Key on Proxy Admin UI
The Admin UI is found on `your-litellm-proxy-endpoint/ui`, example `http://localhost:4000/ui/`
- Set a key name
- Set a Soft Budget on when to get alerted
<Image img={require('../../img/create_key.png')} />
### 3. Test Slack Alerting on Admin UI
After creating a key on the Admin UI, click on "Test Slack Alert" to send a test alert to your Slack channel
<Image img={require('../../img/test_alert.png')} />
### 4. Check Slack
When the test alert works, you should expect to see this on your alerts slack channel
<Image img={require('../../img/budget_alerts.png')} />

View file

@ -145,7 +145,7 @@ $ litellm --config /path/to/config.yaml
Send the same request twice:
```shell
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -153,7 +153,7 @@ curl http://0.0.0.0:8000/v1/chat/completions \
"temperature": 0.7
}'
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -166,14 +166,14 @@ curl http://0.0.0.0:8000/v1/chat/completions \
Send the same request twice:
```shell
curl --location 'http://0.0.0.0:8000/embeddings' \
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
"input": ["write a litellm poem"]
}'
curl --location 'http://0.0.0.0:8000/embeddings' \
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
@ -227,7 +227,7 @@ from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
@ -255,7 +255,7 @@ from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
@ -281,7 +281,7 @@ from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(

View file

@ -63,7 +63,7 @@ litellm_settings:
$ litellm /path/to/config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
@ -162,7 +162,7 @@ litellm_settings:
$ litellm /path/to/config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [

View file

@ -15,7 +15,7 @@ Cli arguments, --host, --port, --num_workers
```
## --port
- **Default:** `8000`
- **Default:** `4000`
- The port to bind the server to.
- **Usage:**
```shell

View file

@ -13,7 +13,7 @@ Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`m
| `general_settings` | Server settings, example setting `master_key: sk-my_special_key` |
| `environment_variables` | Environment Variables example, `REDIS_HOST`, `REDIS_PORT` |
**Complete List:** Check the Swagger UI docs on `<your-proxy-url>/#/config.yaml` (e.g. http://0.0.0.0:8000/#/config.yaml), for everything you can pass in the config.yaml.
**Complete List:** Check the Swagger UI docs on `<your-proxy-url>/#/config.yaml` (e.g. http://0.0.0.0:4000/#/config.yaml), for everything you can pass in the config.yaml.
## Quick Start
@ -49,13 +49,13 @@ model_list:
rpm: 6
- model_name: anthropic-claude
litellm_params:
model="bedrock/anthropic.claude-instant-v1"
model: bedrock/anthropic.claude-instant-v1
### [OPTIONAL] SET AWS REGION ###
aws_region_name="us-east-1"
aws_region_name: us-east-1
- model_name: vllm-models
litellm_params:
model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000
api_base: http://0.0.0.0:4000
rpm: 1440
model_info:
version: 2
@ -91,7 +91,7 @@ Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
If multiple with `model_name=gpt-3.5-turbo` does [Load Balancing](https://docs.litellm.ai/docs/proxy/load_balancing)
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -111,7 +111,7 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
Sends this request to model where `model_name=bedrock-claude-v1` on config.yaml
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-claude-v1",
@ -131,7 +131,7 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
@ -179,7 +179,7 @@ messages = [
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai base to the proxy
openai_api_base="http://0.0.0.0:4000", # set openai base to the proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
@ -189,7 +189,7 @@ print(response)
# Sends request to model where `model_name=bedrock-claude-v1` on config.yaml.
claude_chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai base to the proxy
openai_api_base="http://0.0.0.0:4000", # set openai base to the proxy
model = "bedrock-claude-v1",
temperature=0.1
)
@ -202,7 +202,7 @@ print(response)
</Tabs>
## Save Model-specific params (API Base, API Keys, Temperature, Max Tokens, Seed, Organization, Headers etc.)
## Save Model-specific params (API Base, Keys, Temperature, Max Tokens, Organization, Headers etc.)
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
[**All input params**](https://docs.litellm.ai/docs/completion/input#input-params-1)
@ -244,6 +244,68 @@ $ litellm --config /path/to/config.yaml
```
## Load Balancing
Use this to call multiple instances of the same model and configure things like [routing strategy](../routing.md#advanced).
For optimal performance:
- Set `tpm/rpm` per model deployment. Weighted picks are then based on the established tpm/rpm.
- Select your optimal routing strategy in `router_settings:routing_strategy`.
LiteLLM supports
```python
["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"`
```
When `tpm/rpm` is set + `routing_strategy==simple-shuffle` litellm will use a weighted pick based on set tpm/rpm. **In our load tests setting tpm/rpm for all deployments + `routing_strategy==simple-shuffle` maximized throughput**
- When using multiple LiteLLM Servers / Kubernetes set redis settings `router_settings:redis_host` etc
```yaml
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
rpm: 60 # Optional[int]: When rpm/tpm set - litellm uses weighted pick for load balancing. rpm = Rate limit for this deployment: in requests per minute (rpm).
tpm: 1000 # Optional[int]: tpm = Tokens Per Minute
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
rpm: 600
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
rpm: 60000
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
rpm: 200
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
rpm: 100
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
router_settings: # router_settings are optional
routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
num_retries: 2
timeout: 30 # 30 seconds
redis_host: <your redis host> # set this when using multiple litellm proxy deployments, load balancing state stored in redis
redis_password: <your redis password>
redis_port: 1992
```
## Set Azure `base_model` for cost tracking
**Problem**: Azure returns `gpt-4` in the response when `azure/gpt-4-1106-preview` is used. This leads to inaccurate cost tracking
@ -498,7 +560,7 @@ litellm --config config.yaml
Sends Request to `bedrock-cohere`
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-cohere",
@ -512,30 +574,6 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
```
## Router Settings
Use this to configure things like routing strategy.
```yaml
router_settings:
routing_strategy: "least-busy"
model_list: # will route requests to the least busy ollama model
- model_name: ollama-models
litellm_params:
model: "ollama/mistral"
api_base: "http://127.0.0.1:8001"
- model_name: ollama-models
litellm_params:
model: "ollama/codellama"
api_base: "http://127.0.0.1:8002"
- model_name: ollama-models
litellm_params:
model: "ollama/llama2"
api_base: "http://127.0.0.1:8003"
```
## Configure DB Pool Limits + Connection Timeouts
```yaml

View file

@ -28,7 +28,7 @@ docker run ghcr.io/berriai/litellm:main-latest
<TabItem value="cli" label="With CLI Args">
### Run with LiteLLM CLI args
#### Run with LiteLLM CLI args
See all supported CLI args [here](https://docs.litellm.ai/docs/proxy/cli):
@ -68,8 +68,87 @@ CMD ["--port", "4000", "--config", "config.yaml", "--detailed_debug", "--run_gun
</TabItem>
<TabItem value="kubernetes" label="Kubernetes">
Deploying a config file based litellm instance just requires a simple deployment that loads
the config.yaml file via a config map. Also it would be a good practice to use the env var
declaration for api keys, and attach the env vars with the api key values as an opaque secret.
```yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: litellm-config-file
data:
config.yaml: |
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: os.environ/CA_AZURE_OPENAI_API_KEY
---
apiVersion: v1
kind: Secret
type: Opaque
metadata:
name: litellm-secrets
data:
CA_AZURE_OPENAI_API_KEY: bWVvd19pbV9hX2NhdA== # your api key in base64
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: litellm-deployment
labels:
app: litellm
spec:
selector:
matchLabels:
app: litellm
template:
metadata:
labels:
app: litellm
spec:
containers:
- name: litellm
image: ghcr.io/berriai/litellm:main-latest # it is recommended to fix a version generally
ports:
- containerPort: 4000
volumeMounts:
- name: config-volume
mountPath: /app/proxy_server_config.yaml
subPath: config.yaml
envFrom:
- secretRef:
name: litellm-secrets
volumes:
- name: config-volume
configMap:
name: litellm-config-file
```
:::info
To avoid issues with predictability, difficulties in rollback, and inconsistent environments, use versioning or SHA digests (for example, `litellm:main-v1.30.3` or `litellm@sha256:12345abcdef...`) instead of `litellm:main-latest`.
:::
</TabItem>
</Tabs>
**That's it ! That's the quick start to deploy litellm**
## Options to deploy LiteLLM
| Docs | When to Use |
| --- | --- |
| [Quick Start](#quick-start) | call 100+ LLMs + Load Balancing |
| [Deploy with Database](#deploy-with-database) | + use Virtual Keys + Track Spend |
| [LiteLLM container + Redis](#litellm-container--redis) | + load balance across multiple litellm containers |
| [LiteLLM Database container + PostgresDB + Redis](#litellm-database-container--postgresdb--redis) | + use Virtual Keys + Track Spend + load balance across multiple litellm containers |
## Deploy with Database
We maintain a [seperate Dockerfile](https://github.com/BerriAI/litellm/pkgs/container/litellm-database) for reducing build time when running LiteLLM proxy with a connected Postgres Database
@ -93,7 +172,7 @@ Your OpenAI proxy server is now running on `http://0.0.0.0:4000`.
</TabItem>
<TabItem value="kubernetes-deploy" label="Kubernetes">
### Step 1. Create deployment.yaml
#### Step 1. Create deployment.yaml
```yaml
apiVersion: apps/v1
@ -122,7 +201,7 @@ Your OpenAI proxy server is now running on `http://0.0.0.0:4000`.
kubectl apply -f /path/to/deployment.yaml
```
### Step 2. Create service.yaml
#### Step 2. Create service.yaml
```yaml
apiVersion: v1
@ -143,7 +222,7 @@ spec:
kubectl apply -f /path/to/service.yaml
```
### Step 3. Start server
#### Step 3. Start server
```
kubectl port-forward service/litellm-service 4000:4000
@ -154,13 +233,13 @@ Your OpenAI proxy server is now running on `http://0.0.0.0:4000`.
</TabItem>
<TabItem value="helm-deploy" label="Helm">
### Step 1. Clone the repository
#### Step 1. Clone the repository
```bash
git clone https://github.com/BerriAI/litellm.git
```
### Step 2. Deploy with Helm
#### Step 2. Deploy with Helm
```bash
helm install \
@ -169,20 +248,91 @@ helm install \
deploy/charts/litellm
```
### Step 3. Expose the service to localhost
#### Step 3. Expose the service to localhost
```bash
kubectl \
port-forward \
service/mydeploy-litellm \
8000:8000
4000:4000
```
Your OpenAI proxy server is now running on `http://127.0.0.1:8000`.
Your OpenAI proxy server is now running on `http://127.0.0.1:4000`.
</TabItem>
</Tabs>
## LiteLLM container + Redis
Use Redis when you need litellm to load balance across multiple litellm containers
The only change required is setting Redis on your `config.yaml`
LiteLLM Proxy supports sharing rpm/tpm shared across multiple litellm instances, pass `redis_host`, `redis_password` and `redis_port` to enable this. (LiteLLM will use Redis to track rpm/tpm usage )
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
router_settings:
redis_host: <your redis host>
redis_password: <your redis password>
redis_port: 1992
```
Start docker container with config
```shell
docker run ghcr.io/berriai/litellm:main-latest --config your_config.yaml
```
## LiteLLM Database container + PostgresDB + Redis
The only change required is setting Redis on your `config.yaml`
LiteLLM Proxy supports sharing rpm/tpm shared across multiple litellm instances, pass `redis_host`, `redis_password` and `redis_port` to enable this. (LiteLLM will use Redis to track rpm/tpm usage )
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
router_settings:
redis_host: <your redis host>
redis_password: <your redis password>
redis_port: 1992
```
Start `litellm-database`docker container with config
```shell
docker run --name litellm-proxy \
-e DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname> \
-p 4000:4000 \
ghcr.io/berriai/litellm-database:main-latest --config your_config.yaml
```
## Best Practices for Deploying to Production
### 1. Switch of debug logs in production
don't use [`--detailed-debug`, `--debug`](https://docs.litellm.ai/docs/proxy/debugging#detailed-debug) or `litellm.set_verbose=True`. We found using debug logs can add 5-10% latency per LLM API call
## Advanced Deployment Settings
### Customization of the server root path
@ -214,8 +364,49 @@ Provide an ssl certificate when starting litellm proxy server
## Platform-specific Guide
<Tabs>
<TabItem value="aws-stack" label="AWS Cloud Formation Stack">
### AWS Cloud Formation Stack
LiteLLM AWS Cloudformation Stack - **Get the best LiteLLM AutoScaling Policy and Provision the DB for LiteLLM Proxy**
This will provision:
- LiteLLMServer - EC2 Instance
- LiteLLMServerAutoScalingGroup
- LiteLLMServerScalingPolicy (autoscaling policy)
- LiteLLMDB - RDS::DBInstance
#### Using AWS Cloud Formation Stack
**LiteLLM Cloudformation stack is located [here - litellm.yaml](https://github.com/BerriAI/litellm/blob/main/enterprise/cloudformation_stack/litellm.yaml)**
#### 1. Create the CloudFormation Stack:
In the AWS Management Console, navigate to the CloudFormation service, and click on "Create Stack."
On the "Create Stack" page, select "Upload a template file" and choose the litellm.yaml file
Now monitor the stack was created successfully.
#### 2. Get the Database URL:
Once the stack is created, get the DatabaseURL of the Database resource, copy this value
#### 3. Connect to the EC2 Instance and deploy litellm on the EC2 container
From the EC2 console, connect to the instance created by the stack (e.g., using SSH).
Run the following command, replacing <database_url> with the value you copied in step 2
```shell
docker run --name litellm-proxy \
-e DATABASE_URL=<database_url> \
-p 4000:4000 \
ghcr.io/berriai/litellm-database:main-latest
```
#### 4. Access the Application:
Once the container is running, you can access the application by going to `http://<ec2-public-ip>:4000` in your browser.
</TabItem>
<TabItem value="google-cloud-run" label="Google Cloud Run">
### Deploy on Google Cloud Run
@ -269,9 +460,7 @@ curl https://litellm-7yjrj3ha2q-uc.a.run.app/v1/chat/completions \
**Step 1**
- (Recommended) Use the example file `docker-compose.example.yml` given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.example.yml
- Rename the file `docker-compose.example.yml` to `docker-compose.yml`.
- (Recommended) Use the example file `docker-compose.yml` given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.yml
Here's an example `docker-compose.yml` file
```yaml
@ -284,11 +473,11 @@ services:
target: runtime
image: ghcr.io/berriai/litellm:main-latest
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
- "4000:4000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
command: [ "--config", "/app/config.yaml", "--port", "4000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
```
@ -306,18 +495,4 @@ Run the command `docker-compose up` or `docker compose up` as per your docker in
> Use `-d` flag to run the container in detached mode (background) e.g. `docker compose up -d`
Your LiteLLM container should be running now on the defined port e.g. `8000`.
## LiteLLM Proxy Performance
LiteLLM proxy has been load tested to handle 1500 req/s.
### Throughput - 30% Increase
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
<Image img={require('../../img/throughput.png')} />
### Latency Added - 0.00325 seconds
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
<Image img={require('../../img/latency.png')} />
Your LiteLLM container should be running now on the defined port e.g. `4000`.

View file

@ -38,7 +38,7 @@ $ litellm --config /path/to/config.yaml
3. Test the embedding call
```shell
curl --location 'http://0.0.0.0:8000/v1/embeddings' \
curl --location 'http://0.0.0.0:4000/v1/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{

View file

@ -12,14 +12,16 @@ Features here are behind a commercial license in our `/enterprise` folder. [**Se
:::
Features:
- [ ] Content Moderation with LlamaGuard
- [ ] Content Moderation with Google Text Moderations
- [ ] Content Moderation with LLM Guard
- [ ] Reject calls from Blocked User list
- [ ] Reject calls (incoming / outgoing) with Banned Keywords (e.g. competitors)
- [ ] Tracking Spend for Custom Tags
- ✅ Content Moderation with LlamaGuard
- ✅ Content Moderation with Google Text Moderations
- ✅ Content Moderation with LLM Guard
- ✅ Reject calls from Blocked User list
- ✅ Reject calls (incoming / outgoing) with Banned Keywords (e.g. competitors)
- ✅ Don't log/store specific requests (eg confidential LLM requests)
- ✅ Tracking Spend for Custom Tags
## Content Moderation with LlamaGuard
## Content Moderation
### Content Moderation with LlamaGuard
Currently works with Sagemaker's LlamaGuard endpoint.
@ -39,7 +41,7 @@ os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
```
### Customize LlamaGuard prompt
#### Customize LlamaGuard prompt
To modify the unsafe categories llama guard evaluates against, just create your own version of [this category list](https://github.com/BerriAI/litellm/blob/main/litellm/proxy/llamaguard_prompt.txt)
@ -51,12 +53,12 @@ callbacks: ["llamaguard_moderations"]
llamaguard_unsafe_content_categories: /path/to/llamaguard_prompt.txt
```
## Content Moderation with LLM Guard
### Content Moderation with LLM Guard
Set the LLM Guard API Base in your environment
```env
LLM_GUARD_API_BASE = "http://0.0.0.0:8000"
LLM_GUARD_API_BASE = "http://0.0.0.0:4000"
```
Add `llmguard_moderations` as a callback
@ -78,7 +80,7 @@ Expected results:
LLM Guard: Received response - {"sanitized_prompt": "hello world", "is_valid": true, "scanners": { "Regex": 0.0 }}
```
## Content Moderation with Google Text Moderation
### Content Moderation with Google Text Moderation
Requires your GOOGLE_APPLICATION_CREDENTIALS to be set in your .env (same as VertexAI).
@ -89,7 +91,7 @@ litellm_settings:
callbacks: ["google_text_moderation"]
```
### Set custom confidence thresholds
#### Set custom confidence thresholds
Google Moderations checks the test against several categories. [Source](https://cloud.google.com/natural-language/docs/moderating-text#safety_attribute_confidence_scores)
@ -133,6 +135,33 @@ Here are the category specific values:
| "legal" | legal_threshold: 0.1 |
## Incognito Requests - Don't log anything
When `no-log=True`, the request will **not be logged on any callbacks** and there will be **no server logs on litellm**
```python
import openai
client = openai.OpenAI(
api_key="anything", # proxy api-key
base_url="http://0.0.0.0:4000" # litellm proxy
)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"no-log": True
}
)
print(response)
```
## Enable Blocked User Lists
If any call is made to proxy with this user id, it'll be rejected - use this if you want to let users opt-out of ai features
@ -146,7 +175,7 @@ litellm_settings:
### How to test
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -173,7 +202,7 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
**Block all calls for a user id**
```
curl -X POST "http://0.0.0.0:8000/user/block" \
curl -X POST "http://0.0.0.0:4000/user/block" \
-H "Authorization: Bearer sk-1234" \
-D '{
"user_ids": [<user_id>, ...]
@ -183,7 +212,7 @@ curl -X POST "http://0.0.0.0:8000/user/block" \
**Unblock calls for a user id**
```
curl -X POST "http://0.0.0.0:8000/user/unblock" \
curl -X POST "http://0.0.0.0:4000/user/unblock" \
-H "Authorization: Bearer sk-1234" \
-D '{
"user_ids": [<user_id>, ...]
@ -201,7 +230,7 @@ litellm_settings:
### Test this
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -234,7 +263,7 @@ Set `extra_body={"metadata": { }}` to `metadata` you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -262,7 +291,7 @@ print(response)
Pass `metadata` as part of the request body
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
@ -288,7 +317,7 @@ from langchain.prompts.chat import (
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={

View file

@ -12,10 +12,10 @@ The proxy exposes:
#### Request
Make a GET Request to `/health` on the proxy
```shell
curl --location 'http://0.0.0.0:8000/health' -H "Authorization: Bearer sk-1234"
curl --location 'http://0.0.0.0:4000/health' -H "Authorization: Bearer sk-1234"
```
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:8000/health` for you
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:4000/health` for you
```
litellm --health
```
@ -60,7 +60,7 @@ $ litellm /path/to/config.yaml
3. Query health endpoint:
```
curl --location 'http://0.0.0.0:8000/health'
curl --location 'http://0.0.0.0:4000/health'
```
### Embedding Models
@ -119,7 +119,7 @@ Unprotected endpoint for checking if proxy is ready to accept requests
Example Request:
```bash
curl --location 'http://0.0.0.0:8000/health/readiness'
curl --location 'http://0.0.0.0:4000/health/readiness'
```
Example Response:
@ -153,7 +153,7 @@ Example Request:
```
curl -X 'GET' \
'http://0.0.0.0:8000/health/liveliness' \
'http://0.0.0.0:4000/health/liveliness' \
-H 'accept: application/json'
```

View file

@ -45,7 +45,7 @@ $ litellm --config /path/to/config.yaml
### Step 3: Use proxy - Call a model group [Load Balancing]
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -65,7 +65,7 @@ If you want to call a specific model defined in the `config.yaml`, you can call
In this example it will call `azure/gpt-turbo-small-ca`. Defined in the config on Step 1
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "azure/gpt-turbo-small-ca",

View file

@ -150,7 +150,7 @@ litellm --config proxy_config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",
@ -174,7 +174,7 @@ On Success
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
Cost: 3.65e-05,
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:4000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
```
#### Logging Proxy Request Object, Header, Url
@ -374,7 +374,7 @@ async def log_event(request: Request):
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
uvicorn.run(app, host="127.0.0.1", port=4000)
```
@ -383,7 +383,7 @@ if __name__ == "__main__":
#### Step 2. Set your `GENERIC_LOGGER_ENDPOINT` to the endpoint + route we should send callback logs to
```shell
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:8000/log-event"
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:4000/log-event"
```
#### Step 3. Create a `config.yaml` file and set `litellm_settings`: `success_callback` = ["generic"]
@ -445,7 +445,7 @@ Expected output on Langfuse
Pass `metadata` as part of the request body
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
@ -472,7 +472,7 @@ Set `extra_body={"metadata": { }}` to `metadata` you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -509,7 +509,7 @@ from langchain.prompts.chat import (
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
@ -663,7 +663,7 @@ litellm --config config.yaml --debug
Test Request
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
@ -698,7 +698,7 @@ litellm_settings:
Now, when you [generate keys](./virtual_keys.md) for this team-id
```bash
curl -X POST 'http://0.0.0.0:8000/key/generate' \
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-D '{"team_id": "ishaans-secret-project"}'
@ -742,7 +742,7 @@ litellm --config config.yaml --debug
Test Request
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
@ -903,7 +903,7 @@ litellm --config config.yaml --debug
Test Request
```
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -947,7 +947,7 @@ litellm --config config.yaml --debug
Test Request
```
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",

View file

@ -24,7 +24,7 @@ Retrieve detailed information about each model listed in the `/models` endpoint,
<TabItem value="curl">
```bash
curl -X GET "http://0.0.0.0:8000/model/info" \
curl -X GET "http://0.0.0.0:4000/model/info" \
-H "accept: application/json" \
```
</TabItem>
@ -42,7 +42,7 @@ Add a new model to the list in the `config.yaml` by providing the model paramete
<TabItem value="curl">
```bash
curl -X POST "http://0.0.0.0:8000/model/new" \
curl -X POST "http://0.0.0.0:4000/model/new" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{ "model_name": "azure-gpt-turbo", "litellm_params": {"model": "azure/gpt-3.5-turbo", "api_key": "os.environ/AZURE_API_KEY", "api_base": "my-azure-api-base"} }'

View file

@ -96,7 +96,7 @@ Turn off PII masking for a given key.
Do this by setting `permissions: {"pii": false}`, when generating a key.
```shell
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
@ -119,7 +119,7 @@ The proxy support 2 request-level PII controls:
Set `allow_pii_controls` to true for a given key. This will allow the user to set request-level PII controls.
```bash
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer my-master-key' \
--header 'Content-Type: application/json' \
--data '{
@ -136,7 +136,7 @@ from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(

View file

@ -21,7 +21,7 @@ Run the following command to start the litellm proxy
```shell
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
### Test
@ -250,7 +250,7 @@ litellm --config your_config.yaml
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -270,7 +270,7 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -297,7 +297,7 @@ from langchain.prompts.chat import (
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai_api_base to the LiteLLM Proxy
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
@ -321,7 +321,7 @@ print(response)
```python
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -331,7 +331,7 @@ query_result = embeddings.embed_query(text)
print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -340,7 +340,7 @@ query_result = embeddings.embed_query(text)
print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -407,11 +407,11 @@ services:
litellm:
image: ghcr.io/berriai/litellm:main
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
- "4000:4000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
command: [ "--config", "/app/config.yaml", "--port", "4000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
```
@ -429,7 +429,7 @@ Run the command `docker-compose up` or `docker compose up` as per your docker in
> Use `-d` flag to run the container in detached mode (background) e.g. `docker compose up -d`
Your LiteLLM container should be running now on the defined port e.g. `8000`.
Your LiteLLM container should be running now on the defined port e.g. `4000`.
## Using with OpenAI compatible projects
@ -442,7 +442,7 @@ Set `base_url` to the LiteLLM Proxy server
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -463,7 +463,7 @@ print(response)
```shell
litellm --model gpt-3.5-turbo
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
#### 1. Clone the repo
@ -474,9 +474,9 @@ git clone https://github.com/danny-avila/LibreChat.git
#### 2. Modify Librechat's `docker-compose.yml`
LiteLLM Proxy is running on port `8000`, set `8000` as the proxy below
LiteLLM Proxy is running on port `4000`, set `4000` as the proxy below
```yaml
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
OPENAI_REVERSE_PROXY=http://host.docker.internal:4000/v1/chat/completions
```
#### 3. Save fake OpenAI key in Librechat's `.env`
@ -502,7 +502,7 @@ In the [config.py](https://continue.dev/docs/reference/Models/openai) set this a
api_key="IGNORED",
model="fake-model-name",
context_length=2048, # customize if needed for your model
api_base="http://localhost:8000" # your proxy server url
api_base="http://localhost:4000" # your proxy server url
),
```
@ -514,7 +514,7 @@ Credits [@vividfog](https://github.com/jmorganca/ollama/issues/305#issuecomment-
```shell
$ pip install aider
$ aider --openai-api-base http://0.0.0.0:8000 --openai-api-key fake-key
$ aider --openai-api-base http://0.0.0.0:4000 --openai-api-key fake-key
```
</TabItem>
<TabItem value="autogen" label="AutoGen">
@ -528,7 +528,7 @@ from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
{
"model": "my-fake-model",
"api_base": "http://localhost:8000", #litellm compatible endpoint
"api_base": "http://localhost:4000", #litellm compatible endpoint
"api_type": "open_ai",
"api_key": "NULL", # just a placeholder
}
@ -566,7 +566,7 @@ import guidance
# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:8000", api_key="anything")
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:4000", api_key="anything")
experts = guidance('''
{{#system~}}

View file

@ -45,7 +45,7 @@ litellm_settings:
**Set dynamically**
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-beta",
@ -101,7 +101,7 @@ LiteLLM Proxy supports setting a `timeout` per request
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "gpt-3.5-turbo",
@ -121,7 +121,7 @@ import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(

View file

@ -30,7 +30,7 @@ $ litellm /path/to/config.yaml
```
```bash
curl --location 'http://0.0.0.0:8000/v1/chat/completions' \
curl --location 'http://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{

View file

@ -65,7 +65,7 @@ litellm --config proxy_config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",

View file

@ -0,0 +1,71 @@
# 👥 Team-based Routing
Route calls to different model groups based on the team-id
## Config with model group
Create a config.yaml with 2 model groups + connected postgres db
```yaml
model_list:
- model_name: gpt-3.5-turbo-eu # 👈 Model Group 1
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE_EU
api_key: os.environ/AZURE_API_KEY_EU
api_version: "2023-07-01-preview"
- model_name: gpt-3.5-turbo-worldwide # 👈 Model Group 2
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
general_settings:
master_key: sk-1234
database_url: "postgresql://..." # 👈 Connect proxy to DB
```
Start proxy
```bash
litellm --config /path/to/config.yaml
```
## Create Team with Model Alias
```bash
curl --location 'http://0.0.0.0:4000/team/new' \
--header 'Authorization: Bearer sk-1234' \ # 👈 Master Key
--header 'Content-Type: application/json' \
--data '{
"team_alias": "my-new-team_4",
"model_aliases": {"gpt-3.5-turbo": "gpt-3.5-turbo-eu"}
}'
# Returns team_id: my-team-id
```
## Create Team Key
```bash
curl --location 'http://localhost:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"team_id": "my-team-id", # 👈 YOUR TEAM ID
}'
```
## Call Model with alias
```bash
curl --location 'http://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-A1L0C3Px2LJl53sF_kTF9A' \
--data '{
"model": "gpt-3.5-turbo", # 👈 MODEL
"messages": [{"role": "system", "content": "You'\''re an expert at writing poems"}, {"role": "user", "content": "Write me a poem"}, {"role": "user", "content": "What'\''s your name?"}],
"user": "usha"
}'
```

View file

@ -28,12 +28,12 @@ Follow [setup](./virtual_keys.md#setup)
```bash
litellm --config /path/to/config.yaml
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
### 2. Go to UI
```bash
http://0.0.0.0:8000/ui # <proxy_base_url>/ui
http://0.0.0.0:4000/ui # <proxy_base_url>/ui
```

View file

@ -26,7 +26,7 @@ Set `extra_body={"metadata": { }}` to `metadata` you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -92,7 +92,7 @@ print(response)
Pass `metadata` as part of the request body
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
@ -123,7 +123,7 @@ from langchain.prompts.chat import (
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
@ -195,7 +195,7 @@ from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:8000")
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.embeddings.create(
input=["hello from litellm"],
@ -209,7 +209,7 @@ print(response)
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:8000/embeddings' \
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
@ -223,7 +223,7 @@ curl --location 'http://0.0.0.0:8000/embeddings' \
```python
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -233,7 +233,7 @@ query_result = embeddings.embed_query(text)
print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -242,7 +242,7 @@ query_result = embeddings.embed_query(text)
print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:8000", openai_api_key="temp-key")
embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")
text = "This is a test document."
@ -296,7 +296,7 @@ from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:8000")
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
@ -310,7 +310,7 @@ print(response)
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:8000/moderations' \
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
@ -421,7 +421,7 @@ user_config = {
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# send request to `user-azure-instance`
@ -489,7 +489,7 @@ const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:8000"
baseURL: "http://0.0.0.0:4000"
});
async function main() {
@ -516,7 +516,7 @@ Here's how to do it:
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -541,7 +541,7 @@ Pass in the litellm_params (E.g. api_key, api_base, etc.) via the `extra_body` p
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -571,7 +571,7 @@ const { OpenAI } = require('openai');
const openai = new OpenAI({
apiKey: "sk-1234",
baseURL: "http://0.0.0.0:8000"
baseURL: "http://0.0.0.0:4000"
});
async function main() {

View file

@ -44,7 +44,7 @@ litellm /path/to/config.yaml
**Step 3. Send test call**
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Autherization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
@ -72,7 +72,7 @@ By default the `max_budget` is set to `null` and is not checked for keys
#### **Add budgets to users**
```shell
curl --location 'http://localhost:8000/user/new' \
curl --location 'http://localhost:4000/user/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["azure-models"], "max_budget": 0, "user_id": "krrish3@berri.ai"}'
@ -96,7 +96,7 @@ curl --location 'http://localhost:8000/user/new' \
`budget_duration`: Budget is reset at the end of specified duration. If not set, budget is never reset. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
```
curl 'http://0.0.0.0:8000/user/new' \
curl 'http://0.0.0.0:4000/user/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -113,7 +113,7 @@ Now you can just call `/key/generate` with that user_id (i.e. krrish3@berri.ai)
- **Spend Tracking**: spend for this key will update krrish3@berri.ai's spend as well
```bash
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data '{"models": ["azure-models"], "user_id": "krrish3@berri.ai"}'
@ -127,7 +127,7 @@ You can:
#### **Add budgets to users**
```shell
curl --location 'http://localhost:8000/team/new' \
curl --location 'http://localhost:4000/team/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -238,7 +238,7 @@ By default the `max_budget` is set to `null` and is not checked for keys
#### **Add budgets to keys**
```bash
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -250,7 +250,7 @@ curl 'http://0.0.0.0:8000/key/generate' \
Example Request to `/chat/completions` when key has crossed budget
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <generated-key>' \
--data ' {
@ -278,7 +278,7 @@ Expected Response from `/chat/completions` when key has crossed budget
`budget_duration`: Budget is reset at the end of specified duration. If not set, budget is never reset. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
```
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -310,7 +310,7 @@ By default the `model_max_budget` is set to `{}` and is not checked for keys
#### **Add model specific budgets to keys**
```bash
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -335,7 +335,7 @@ Use `/user/new`, to persist rate limits across multiple keys.
```shell
curl --location 'http://0.0.0.0:8000/user/new' \
curl --location 'http://0.0.0.0:4000/user/new' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"user_id": "krrish@berri.ai", "max_parallel_requests": 10, "tpm_limit": 20, "rpm_limit": 4}'
@ -359,7 +359,7 @@ curl --location 'http://0.0.0.0:8000/user/new' \
Use `/key/generate`, if you want them for just that key.
```shell
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"max_parallel_requests": 10, "tpm_limit": 20, "rpm_limit": 4}'
@ -401,7 +401,7 @@ model_list:
**Step 2. Create key with access group**
```bash
curl --location 'http://localhost:8000/user/new' \
curl --location 'http://localhost:4000/user/new' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-d '{"models": ["beta-models"], # 👈 Model Access Group
@ -414,7 +414,7 @@ curl --location 'http://localhost:8000/user/new' \
Just include user_id in the `/key/generate` request.
```bash
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data '{"models": ["azure-models"], "user_id": "krrish@berri.ai"}'

View file

@ -59,7 +59,7 @@ litellm --config /path/to/config.yaml
**Step 3: Generate temporary keys**
```shell
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai"}}'
@ -70,7 +70,7 @@ curl 'http://0.0.0.0:8000/key/generate' \
### Request
```shell
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -79,6 +79,7 @@ curl 'http://0.0.0.0:8000/key/generate' \
"metadata": {"user": "ishaan@berri.ai"},
"team_id": "core-infra",
"max_budget": 10,
"soft_budget": 5,
}'
```
@ -93,6 +94,7 @@ Request Params:
- `config`: *Optional[dict]* - any key-specific configs, overrides config in config.yaml
- `spend`: *Optional[int]* - Amount spent by key. Default is 0. Will be updated by proxy whenever key is used. https://docs.litellm.ai/docs/proxy/virtual_keys#managing-auth---tracking-spend
- `max_budget`: *Optional[float]* - Specify max budget for a given key.
- `soft_budget`: *Optional[float]* - Specify soft limit budget for a given key. Get Alerts when key hits its soft budget
- `model_max_budget`: *Optional[dict[str, float]]* - Specify max budget for each model, `model_max_budget={"gpt4": 0.5, "gpt-5": 0.01}`
- `max_parallel_requests`: *Optional[int]* - Rate limit a user based on the number of parallel requests. Raises 429 error, if user's parallel requests > x.
- `metadata`: *Optional[dict]* - Metadata for key, store information for key. Example metadata = {"team": "core-infra", "app": "app2", "email": "ishaan@berri.ai" }
@ -103,7 +105,7 @@ Request Params:
```python
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
"expires": "2023-11-19T01:38:25.834000+00:00" # datetime object
"key_name": "sk-...7sFA" # abbreviated key string, ONLY stored in db if `allow_user_auth: true` set - [see](./ui.md)
...
}
@ -145,7 +147,7 @@ model_list:
**Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.**
```bash
curl -X POST "https://0.0.0.0:8000/key/generate" \
curl -X POST "https://0.0.0.0:4000/key/generate" \
-H "Authorization: Bearer <your-master-key>" \
-H "Content-Type: application/json" \
-d '{
@ -180,7 +182,7 @@ model_list:
**Step 2. Create key with access group**
```bash
curl --location 'http://localhost:8000/key/generate' \
curl --location 'http://localhost:4000/key/generate' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-d '{"models": ["beta-models"], # 👈 Model Access Group
@ -192,7 +194,7 @@ curl --location 'http://localhost:8000/key/generate' \
### Request
```shell
curl -X GET "http://0.0.0.0:8000/key/info?key=sk-02Wr4IAlN3NvPXvL5JVvDA" \
curl -X GET "http://0.0.0.0:4000/key/info?key=sk-02Wr4IAlN3NvPXvL5JVvDA" \
-H "Authorization: Bearer sk-1234"
```
@ -226,7 +228,7 @@ Request Params:
### Request
```shell
curl 'http://0.0.0.0:8000/key/update' \
curl 'http://0.0.0.0:4000/key/update' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -264,7 +266,7 @@ Request Params:
### Request
```shell
curl 'http://0.0.0.0:8000/key/delete' \
curl 'http://0.0.0.0:4000/key/delete' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -498,7 +500,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
Set `max_budget` in (USD $) param in the `key/generate` request. By default the `max_budget` is set to `null` and is not checked for keys
```shell
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
@ -515,7 +517,7 @@ curl 'http://0.0.0.0:8000/key/generate' \
Example Request to `/chat/completions` when key has crossed budget
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-ULl_IKCVFy2EZRzQB16RUA' \
--data ' {
@ -543,10 +545,10 @@ Expected Response from `/chat/completions` when key has crossed budget
LiteLLM exposes a `/user/new` endpoint to create budgets for users, that persist across multiple keys.
This is documented in the swagger (live on your server root endpoint - e.g. `http://0.0.0.0:8000/`). Here's an example request.
This is documented in the swagger (live on your server root endpoint - e.g. `http://0.0.0.0:4000/`). Here's an example request.
```shell
curl --location 'http://localhost:8000/user/new' \
curl --location 'http://localhost:4000/user/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["azure-models"], "max_budget": 0, "user_id": "krrish3@berri.ai"}'
@ -569,7 +571,7 @@ The request is a normal `/key/generate` request body + a `max_budget` field.
You can get spend for a key by using the `/key/info` endpoint.
```bash
curl 'http://0.0.0.0:8000/key/info?key=<user-key>' \
curl 'http://0.0.0.0:4000/key/info?key=<user-key>' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
```
@ -769,7 +771,7 @@ general_settings:
#### Step 3. Generate Key
```bash
curl --location 'http://0.0.0.0:8000/key/generate' \
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"models": ["azure-models"], "aliases": {"mistral-7b": "gpt-3.5-turbo"}, "duration": null}'

View file

@ -22,7 +22,7 @@ $ pip install 'litellm[proxy]'
```shell
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
### Test
@ -39,7 +39,7 @@ This will now automatically route any requests for gpt-3.5-turbo to bigcode star
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -59,7 +59,7 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -246,7 +246,7 @@ Set `base_url` to the LiteLLM Proxy server
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
@ -267,7 +267,7 @@ print(response)
```shell
litellm --model gpt-3.5-turbo
#INFO: Proxy running on http://0.0.0.0:8000
#INFO: Proxy running on http://0.0.0.0:4000
```
#### 1. Clone the repo
@ -278,9 +278,9 @@ git clone https://github.com/danny-avila/LibreChat.git
#### 2. Modify Librechat's `docker-compose.yml`
LiteLLM Proxy is running on port `8000`, set `8000` as the proxy below
LiteLLM Proxy is running on port `4000`, set `4000` as the proxy below
```yaml
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
OPENAI_REVERSE_PROXY=http://host.docker.internal:4000/v1/chat/completions
```
#### 3. Save fake OpenAI key in Librechat's `.env`
@ -306,7 +306,7 @@ In the [config.py](https://continue.dev/docs/reference/Models/openai) set this a
api_key="IGNORED",
model="fake-model-name",
context_length=2048, # customize if needed for your model
api_base="http://localhost:8000" # your proxy server url
api_base="http://localhost:4000" # your proxy server url
),
```
@ -318,7 +318,7 @@ Credits [@vividfog](https://github.com/jmorganca/ollama/issues/305#issuecomment-
```shell
$ pip install aider
$ aider --openai-api-base http://0.0.0.0:8000 --openai-api-key fake-key
$ aider --openai-api-base http://0.0.0.0:4000 --openai-api-key fake-key
```
</TabItem>
<TabItem value="autogen" label="AutoGen">
@ -332,7 +332,7 @@ from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
{
"model": "my-fake-model",
"api_base": "http://localhost:8000", #litellm compatible endpoint
"api_base": "http://localhost:4000", #litellm compatible endpoint
"api_type": "open_ai",
"api_key": "NULL", # just a placeholder
}
@ -370,7 +370,7 @@ import guidance
# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:8000", api_key="anything")
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:4000", api_key="anything")
experts = guidance('''
{{#system~}}
@ -479,7 +479,7 @@ $ litellm --config /path/to/config.yaml
#### Step 3: Use proxy
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-alpha",
@ -529,7 +529,7 @@ $ litellm --config /path/to/config.yaml
#### Step 3: Use proxy
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
@ -586,7 +586,7 @@ litellm_settings:
**Set dynamically**
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-beta",
@ -615,7 +615,7 @@ model_list:
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000/
api_base: http://0.0.0.0:4000/
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
@ -665,7 +665,7 @@ litellm --config /path/to/config.yaml
**Step 3: Generate temporary keys**
```shell
curl 'http://0.0.0.0:8000/key/generate' \
curl 'http://0.0.0.0:4000/key/generate' \
--h 'Authorization: Bearer sk-1234' \
--d '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m"}'
```
@ -719,7 +719,7 @@ model_list:
**Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.**
```bash
curl -X POST "https://0.0.0.0:8000/key/generate" \
curl -X POST "https://0.0.0.0:4000/key/generate" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
@ -737,7 +737,7 @@ curl -X POST "https://0.0.0.0:8000/key/generate" \
You can get spend for a key by using the `/key/info` endpoint.
```bash
curl 'http://0.0.0.0:8000/key/info?key=<user-key>' \
curl 'http://0.0.0.0:4000/key/info?key=<user-key>' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
```
@ -868,7 +868,7 @@ $ litellm --config /path/to/config.yaml
#### Using Caching
Send the same request twice:
```shell
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -876,7 +876,7 @@ curl http://0.0.0.0:8000/v1/chat/completions \
"temperature": 0.7
}'
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -889,7 +889,7 @@ curl http://0.0.0.0:8000/v1/chat/completions \
Caching can be switched on/off per `/chat/completions` request
- Caching **on** for completion - pass `caching=True`:
```shell
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -900,7 +900,7 @@ Caching can be switched on/off per `/chat/completions` request
```
- Caching **off** for completion - pass `caching=False`:
```shell
curl http://0.0.0.0:8000/v1/chat/completions \
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
@ -963,10 +963,10 @@ https://api.openai.com/v1/chat/completions \
Use this to health check all LLMs defined in your config.yaml
#### Request
```shell
curl --location 'http://0.0.0.0:8000/health'
curl --location 'http://0.0.0.0:4000/health'
```
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:8000/health` for you
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:4000/health` for you
```
litellm --health
```
@ -1087,7 +1087,7 @@ litellm -config config.yaml
#### Run a test request to Proxy
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1244' \
--data ' {
"model": "gpt-3.5-turbo",
@ -1213,7 +1213,7 @@ LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw Open
```
#### --port
- **Default:** `8000`
- **Default:** `4000`
- The port to bind the server to.
- **Usage:**
```shell

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 203 KiB

View file

@ -39,17 +39,18 @@ const sidebars = {
"proxy/user_keys",
"proxy/virtual_keys",
"proxy/users",
"proxy/team_based_routing",
"proxy/ui",
"proxy/metrics",
"proxy/model_management",
"proxy/health",
"proxy/debugging",
"proxy/pii_masking",
"proxy/budget_alerts",
{
type: "category",
label: "🔥 Load Balancing",
items: ["proxy/load_balancing", "proxy/reliability"],
},
"proxy/model_management",
"proxy/health",
"proxy/debugging",
"proxy/pii_masking",
"proxy/caching",
{
type: "category",
@ -90,12 +91,13 @@ const sidebars = {
},
{
type: "category",
label: "Embedding(), Moderation(), Image Generation()",
label: "Embedding(), Moderation(), Image Generation(), Audio Transcriptions()",
items: [
"embedding/supported_embedding",
"embedding/async_embedding",
"embedding/moderation",
"image_generation",
"audio_transcription"
],
},
{

View file

@ -0,0 +1,44 @@
Resources:
LiteLLMServer:
Type: AWS::EC2::Instance
Properties:
AvailabilityZone: us-east-1a
ImageId: ami-0f403e3180720dd7e
InstanceType: t2.micro
LiteLLMServerAutoScalingGroup:
Type: AWS::AutoScaling::AutoScalingGroup
Properties:
AvailabilityZones:
- us-east-1a
LaunchConfigurationName: !Ref LiteLLMServerLaunchConfig
MinSize: 1
MaxSize: 3
DesiredCapacity: 1
HealthCheckGracePeriod: 300
LiteLLMServerLaunchConfig:
Type: AWS::AutoScaling::LaunchConfiguration
Properties:
ImageId: ami-0f403e3180720dd7e # Replace with your desired AMI ID
InstanceType: t2.micro
LiteLLMServerScalingPolicy:
Type: AWS::AutoScaling::ScalingPolicy
Properties:
AutoScalingGroupName: !Ref LiteLLMServerAutoScalingGroup
PolicyType: TargetTrackingScaling
TargetTrackingConfiguration:
PredefinedMetricSpecification:
PredefinedMetricType: ASGAverageCPUUtilization
TargetValue: 60.0
LiteLLMDB:
Type: AWS::RDS::DBInstance
Properties:
AllocatedStorage: 20
Engine: postgres
MasterUsername: litellmAdmin
MasterUserPassword: litellmPassword
DBInstanceClass: db.t3.micro
AvailabilityZone: us-east-1a

View file

@ -79,6 +79,9 @@ max_budget: float = 0.0 # set the max budget across all providers
budget_duration: Optional[str] = (
None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
)
default_soft_budget: float = (
50.0 # by default all litellm proxy keys have a soft budget of 50.0
)
_openai_finish_reasons = ["stop", "length", "function_call", "content_filter", "null"]
_openai_completion_params = [
"functions",
@ -567,9 +570,11 @@ from .utils import (
_calculate_retry_after,
_should_retry,
get_secret,
get_supported_openai_params,
)
from .llms.huggingface_restapi import HuggingfaceConfig
from .llms.anthropic import AnthropicConfig
from .llms.anthropic_text import AnthropicTextConfig
from .llms.replicate import ReplicateConfig
from .llms.cohere import CohereConfig
from .llms.ai21 import AI21Config
@ -583,14 +588,17 @@ from .llms.petals import PetalsConfig
from .llms.vertex_ai import VertexAIConfig
from .llms.sagemaker import SagemakerConfig
from .llms.ollama import OllamaConfig
from .llms.ollama_chat import OllamaChatConfig
from .llms.maritalk import MaritTalkConfig
from .llms.bedrock import (
AmazonTitanConfig,
AmazonAI21Config,
AmazonAnthropicConfig,
AmazonAnthropicClaude3Config,
AmazonCohereConfig,
AmazonLlamaConfig,
AmazonStabilityConfig,
AmazonMistralConfig,
)
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig
from .llms.azure import AzureOpenAIConfig, AzureOpenAIError

View file

@ -31,6 +31,18 @@ def _turn_on_debug():
verbose_proxy_logger.setLevel(level=logging.DEBUG) # set proxy logs to debug
def _disable_debugging():
verbose_logger.disabled = True
verbose_router_logger.disabled = True
verbose_proxy_logger.disabled = True
def _enable_debugging():
verbose_logger.disabled = False
verbose_router_logger.disabled = False
verbose_proxy_logger.disabled = False
def print_verbose(print_statement):
try:
if set_verbose:

View file

@ -10,7 +10,7 @@
import litellm
import time, logging, asyncio
import json, traceback, ast, hashlib
from typing import Optional, Literal, List, Union, Any
from typing import Optional, Literal, List, Union, Any, BinaryIO
from openai._models import BaseModel as OpenAIObject
from litellm._logging import verbose_logger
@ -48,6 +48,7 @@ class InMemoryCache(BaseCache):
self.ttl_dict = {}
def set_cache(self, key, value, **kwargs):
print_verbose("InMemoryCache: set_cache")
self.cache_dict[key] = value
if "ttl" in kwargs:
self.ttl_dict[key] = time.time() + kwargs["ttl"]
@ -572,6 +573,7 @@ class S3Cache(BaseCache):
self.bucket_name = s3_bucket_name
self.key_prefix = s3_path.rstrip("/") + "/" if s3_path else ""
# Create an S3 client with custom endpoint URL
self.s3_client = boto3.client(
"s3",
region_name=s3_region_name,
@ -763,8 +765,24 @@ class Cache:
password: Optional[str] = None,
similarity_threshold: Optional[float] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
List[
Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
]
]
] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
],
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
@ -776,6 +794,7 @@ class Cache:
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
s3_path: Optional[str] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
**kwargs,
@ -825,6 +844,7 @@ class Cache:
s3_aws_secret_access_key=s3_aws_secret_access_key,
s3_aws_session_token=s3_aws_session_token,
s3_config=s3_config,
s3_path=s3_path,
**kwargs,
)
if "cache" not in litellm.input_callback:
@ -877,9 +897,14 @@ class Cache:
"input",
"encoding_format",
] # embedding kwargs = model, input, user, encoding_format. Model, user are checked in completion_kwargs
transcription_only_kwargs = [
"file",
"language",
]
# combined_kwargs - NEEDS to be ordered across get_cache_key(). Do not use a set()
combined_kwargs = completion_kwargs + embedding_only_kwargs
combined_kwargs = (
completion_kwargs + embedding_only_kwargs + transcription_only_kwargs
)
for param in combined_kwargs:
# ignore litellm params here
if param in kwargs:
@ -911,6 +936,17 @@ class Cache:
param_value = (
caching_group or model_group or kwargs[param]
) # use caching_group, if set then model_group if it exists, else use kwargs["model"]
elif param == "file":
metadata_file_name = kwargs.get("metadata", {}).get(
"file_name", None
)
litellm_params_file_name = kwargs.get("litellm_params", {}).get(
"file_name", None
)
if metadata_file_name is not None:
param_value = metadata_file_name
elif litellm_params_file_name is not None:
param_value = litellm_params_file_name
else:
if kwargs[param] is None:
continue # ignore None params
@ -1140,8 +1176,24 @@ def enable_cache(
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
List[
Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
]
]
] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
],
**kwargs,
):
"""
@ -1189,8 +1241,24 @@ def update_cache(
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
List[
Literal[
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
]
]
] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
],
**kwargs,
):
"""

View file

@ -124,7 +124,6 @@ class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callbac
start_time,
end_time,
)
print_verbose(f"Custom Logger - final response object: {response_obj}")
except:
# traceback.print_exc()
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
@ -142,7 +141,6 @@ class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callbac
start_time,
end_time,
)
print_verbose(f"Custom Logger - final response object: {response_obj}")
except:
# traceback.print_exc()
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")

View file

@ -265,8 +265,14 @@ class LangFuseLogger:
cost = kwargs.get("response_cost", None)
print_verbose(f"trace: {cost}")
if supports_tags:
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# generate langfuse tags
if key in [
"user_api_key",
"user_api_key_user_id",
@ -274,6 +280,19 @@ class LangFuseLogger:
"semantic-similarity",
]:
tags.append(f"{key}:{value}")
# clean litellm metadata before logging
if key in [
"headers",
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
if supports_tags:
if "cache_hit" in kwargs:
if kwargs["cache_hit"] is None:
kwargs["cache_hit"] = False
@ -301,7 +320,7 @@ class LangFuseLogger:
"input": input,
"output": output,
"usage": usage,
"metadata": metadata,
"metadata": clean_metadata,
"level": level,
}

View file

@ -104,6 +104,23 @@ class S3Logger:
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"headers",
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
payload = {
"id": id,
@ -117,7 +134,7 @@ class S3Logger:
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": metadata,
"metadata": clean_metadata,
}
# Ensure everything in the payload is converted to str

View file

@ -77,9 +77,9 @@ class AlephAlphaConfig:
- `control_log_additive` (boolean; default value: true): Method of applying control to attention scores.
"""
maximum_tokens: Optional[
int
] = litellm.max_tokens # aleph alpha requires max tokens
maximum_tokens: Optional[int] = (
litellm.max_tokens
) # aleph alpha requires max tokens
minimum_tokens: Optional[int] = None
echo: Optional[bool] = None
temperature: Optional[int] = None
@ -285,7 +285,10 @@ def completion(
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
encoding.encode(
model_response["choices"][0]["message"]["content"],
disallowed_special=(),
)
)
model_response["created"] = int(time.time())

View file

@ -1,12 +1,18 @@
import os, types
import json
from enum import Enum
import requests
import time
import requests, copy
import time, uuid
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
from litellm.utils import ModelResponse, Usage, map_finish_reason
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from .prompt_templates.factory import (
prompt_factory,
custom_prompt,
construct_tool_use_system_prompt,
extract_between_tags,
parse_xml_params,
)
import httpx
@ -20,7 +26,7 @@ class AnthropicError(Exception):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://api.anthropic.com/v1/complete"
method="POST", url="https://api.anthropic.com/v1/messages"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
@ -35,23 +41,23 @@ class AnthropicConfig:
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens_to_sample: Optional[
int
] = litellm.max_tokens # anthropic requires a default
max_tokens: Optional[int] = litellm.max_tokens # anthropic requires a default
stop_sequences: Optional[list] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
metadata: Optional[dict] = None
system: Optional[str] = None
def __init__(
self,
max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default
max_tokens: Optional[int] = 256, # anthropic requires a default
stop_sequences: Optional[list] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
metadata: Optional[dict] = None,
system: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
@ -110,6 +116,8 @@ def completion(
headers={},
):
headers = validate_environment(api_key, headers)
_is_function_call = False
messages = copy.deepcopy(messages)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
@ -120,7 +128,17 @@ def completion(
messages=messages,
)
else:
prompt = prompt_factory(
# Separate system prompt from rest of message
system_prompt_idx: Optional[int] = None
for idx, message in enumerate(messages):
if message["role"] == "system":
optional_params["system"] = message["content"]
system_prompt_idx = idx
break
if system_prompt_idx is not None:
messages.pop(system_prompt_idx)
# Format rest of message according to anthropic guidelines
messages = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic"
)
@ -132,15 +150,26 @@ def completion(
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
## Handle Tool Calling
if "tools" in optional_params:
_is_function_call = True
tool_calling_system_prompt = construct_tool_use_system_prompt(
tools=optional_params["tools"]
)
optional_params["system"] = (
optional_params.get("system", "\n") + tool_calling_system_prompt
) # add the anthropic tool calling prompt to the system prompt
optional_params.pop("tools")
data = {
"model": model,
"prompt": prompt,
"messages": messages,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
input=messages,
api_key=api_key,
additional_args={
"complete_input_dict": data,
@ -173,7 +202,7 @@ def completion(
## LOGGING
logging_obj.post_call(
input=prompt,
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
@ -191,20 +220,45 @@ def completion(
message=str(completion_response["error"]),
status_code=response.status_code,
)
elif len(completion_response["content"]) == 0:
raise AnthropicError(
message="No content in response",
status_code=response.status_code,
)
else:
if len(completion_response["completion"]) > 0:
model_response["choices"][0]["message"][
"content"
] = completion_response["completion"]
model_response.choices[0].finish_reason = completion_response["stop_reason"]
text_content = completion_response["content"][0].get("text", None)
## TOOL CALLING - OUTPUT PARSE
if text_content is not None and "invoke" in text_content:
function_name = extract_between_tags("tool_name", text_content)[0]
function_arguments_str = extract_between_tags("invoke", text_content)[
0
].strip()
function_arguments_str = f"<invoke>{function_arguments_str}</invoke>"
function_arguments = parse_xml_params(function_arguments_str)
_message = litellm.Message(
tool_calls=[
{
"id": f"call_{uuid.uuid4()}",
"type": "function",
"function": {
"name": function_name,
"arguments": json.dumps(function_arguments),
},
}
],
content=None,
)
model_response.choices[0].message = _message # type: ignore
else:
model_response.choices[0].message.content = text_content # type: ignore
model_response.choices[0].finish_reason = map_finish_reason(
completion_response["stop_reason"]
)
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
) ##[TODO] use the anthropic tokenizer here
prompt_tokens = completion_response["usage"]["input_tokens"]
completion_tokens = completion_response["usage"]["output_tokens"]
total_tokens = prompt_tokens + completion_tokens
model_response["created"] = int(time.time())
model_response["model"] = model

View file

@ -0,0 +1,222 @@
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
import httpx
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://api.anthropic.com/v1/complete"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AnthropicTextConfig:
"""
Reference: https://docs.anthropic.com/claude/reference/complete_post
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens_to_sample: Optional[int] = (
litellm.max_tokens
) # anthropic requires a default
stop_sequences: Optional[list] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
metadata: Optional[dict] = None
def __init__(
self,
max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default
stop_sequences: Optional[list] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
metadata: Optional[dict] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
# makes headers for API call
def validate_environment(api_key, user_headers):
if api_key is None:
raise ValueError(
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": api_key,
}
if user_headers is not None and isinstance(user_headers, dict):
headers = {**headers, **user_headers}
return headers
def completion(
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
):
headers = validate_environment(api_key, headers)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic"
)
## Load Config
config = litellm.AnthropicTextConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": api_base,
"headers": headers,
},
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
api_base,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"],
)
if response.status_code != 200:
raise AnthropicError(
status_code=response.status_code, message=response.text
)
return response.iter_lines()
else:
response = requests.post(api_base, headers=headers, data=json.dumps(data))
if response.status_code != 200:
raise AnthropicError(
status_code=response.status_code, message=response.text
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise AnthropicError(
message=response.text, status_code=response.status_code
)
if "error" in completion_response:
raise AnthropicError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
if len(completion_response["completion"]) > 0:
model_response["choices"][0]["message"]["content"] = (
completion_response["completion"]
)
model_response.choices[0].finish_reason = completion_response["stop_reason"]
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
) ##[TODO] use the anthropic tokenizer here
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -7,13 +7,15 @@ from litellm.utils import (
Message,
CustomStreamWrapper,
convert_to_model_response_object,
TranscriptionResponse,
)
from typing import Callable, Optional
from typing import Callable, Optional, BinaryIO
from litellm import OpenAIConfig
import litellm, json
import httpx
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport
from openai import AzureOpenAI, AsyncAzureOpenAI
import uuid
class AzureOpenAIError(Exception):
@ -270,6 +272,14 @@ class AzureChatCompletion(BaseLLM):
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault(
"api-version", api_version
)
response = azure_client.chat.completions.create(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump()
## LOGGING
@ -333,10 +343,17 @@ class AzureChatCompletion(BaseLLM):
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
# setting Azure client
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
@ -401,6 +418,9 @@ class AzureChatCompletion(BaseLLM):
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(azure_client._custom_query, dict):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
@ -454,6 +474,11 @@ class AzureChatCompletion(BaseLLM):
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
@ -757,6 +782,158 @@ class AzureChatCompletion(BaseLLM):
else:
raise AzureOpenAIError(status_code=500, message=str(e))
def audio_transcriptions(
self,
model: str,
audio_file: BinaryIO,
optional_params: dict,
model_response: TranscriptionResponse,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
client=None,
azure_ad_token: Optional[str] = None,
logging_obj=None,
atranscription: bool = False,
):
data = {"model": model, "file": audio_file, **optional_params}
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"timeout": timeout,
}
max_retries = optional_params.pop("max_retries", None)
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if max_retries is not None:
azure_client_params["max_retries"] = max_retries
if atranscription == True:
return self.async_audio_transcriptions(
audio_file=audio_file,
data=data,
model_response=model_response,
timeout=timeout,
api_key=api_key,
api_base=api_base,
client=client,
azure_client_params=azure_client_params,
max_retries=max_retries,
logging_obj=logging_obj,
)
if client is None:
azure_client = AzureOpenAI(http_client=litellm.client_session, **azure_client_params) # type: ignore
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
response = azure_client.audio.transcriptions.create(
**data, timeout=timeout # type: ignore
)
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return final_response
async def async_audio_transcriptions(
self,
audio_file: BinaryIO,
data: dict,
model_response: TranscriptionResponse,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
azure_client_params=None,
max_retries=None,
logging_obj=None,
):
response = None
try:
if client is None:
async_azure_client = AsyncAzureOpenAI(
**azure_client_params,
http_client=litellm.aclient_session,
)
else:
async_azure_client = client
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=async_azure_client.api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
response = await async_azure_client.audio.transcriptions.create(
**data, timeout=timeout
) # type: ignore
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return response
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
async def ahealth_check(
self,
model: Optional[str],

View file

@ -1,11 +1,17 @@
import json, copy, types
import os
from enum import Enum
import time
import time, uuid
from typing import Callable, Optional, Any, Union, List
import litellm
from litellm.utils import ModelResponse, get_secret, Usage, ImageResponse
from .prompt_templates.factory import prompt_factory, custom_prompt
from .prompt_templates.factory import (
prompt_factory,
custom_prompt,
construct_tool_use_system_prompt,
extract_between_tags,
parse_xml_params,
)
import httpx
@ -70,6 +76,61 @@ class AmazonTitanConfig:
}
class AmazonAnthropicClaude3Config:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
Supported Params for the Amazon / Anthropic Claude 3 models:
- `max_tokens` (integer) max tokens,
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
"""
max_tokens: Optional[int] = litellm.max_tokens
anthropic_version: Optional[str] = "bedrock-2023-05-31"
def __init__(
self,
max_tokens: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return ["max_tokens", "tools", "tool_choice", "stream"]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream":
optional_params["stream"] = value
return optional_params
class AmazonAnthropicConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
@ -123,6 +184,25 @@ class AmazonAnthropicConfig:
and v is not None
}
def get_supported_openai_params(
self,
):
return ["max_tokens", "temperature", "stop", "top_p", "stream"]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens_to_sample"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop_sequences"] = value
if param == "stream" and value == True:
optional_params["stream"] = value
return optional_params
class AmazonCohereConfig:
"""
@ -282,6 +362,56 @@ class AmazonLlamaConfig:
}
class AmazonMistralConfig:
"""
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral.html
Supported Params for the Amazon / Mistral models:
- `max_tokens` (integer) max tokens,
- `temperature` (float) temperature for model,
- `top_p` (float) top p for model
- `stop` [string] A list of stop sequences that if generated by the model, stops the model from generating further output.
- `top_k` (float) top k for model
"""
max_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[float] = None
stop: Optional[List[str]] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
top_p: Optional[int] = None,
top_k: Optional[float] = None,
stop: Optional[List[str]] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonStabilityConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
@ -492,6 +622,10 @@ def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
elif provider == "mistral":
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
else:
prompt = ""
for message in messages:
@ -568,14 +702,47 @@ def completion(
inference_params = copy.deepcopy(optional_params)
stream = inference_params.pop("stream", False)
if provider == "anthropic":
## LOAD CONFIG
config = litellm.AmazonAnthropicConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
if model.startswith("anthropic.claude-3"):
# Separate system prompt from rest of message
system_prompt_idx: Optional[int] = None
for idx, message in enumerate(messages):
if message["role"] == "system":
inference_params["system"] = message["content"]
system_prompt_idx = idx
break
if system_prompt_idx is not None:
messages.pop(system_prompt_idx)
# Format rest of message according to anthropic guidelines
messages = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic"
)
## LOAD CONFIG
config = litellm.AmazonAnthropicClaude3Config.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
## Handle Tool Calling
if "tools" in inference_params:
tool_calling_system_prompt = construct_tool_use_system_prompt(
tools=inference_params["tools"]
)
inference_params["system"] = (
inference_params.get("system", "\n")
+ tool_calling_system_prompt
) # add the anthropic tool calling prompt to the system prompt
inference_params.pop("tools")
data = json.dumps({"messages": messages, **inference_params})
else:
## LOAD CONFIG
config = litellm.AmazonAnthropicConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "ai21":
## LOAD CONFIG
config = litellm.AmazonAI21Config.get_config()
@ -595,9 +762,9 @@ def completion(
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if optional_params.get("stream", False) == True:
inference_params[
"stream"
] = True # cohere requires stream = True in inference params
inference_params["stream"] = (
True # cohere requires stream = True in inference params
)
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "meta":
## LOAD CONFIG
@ -623,7 +790,16 @@ def completion(
"textGenerationConfig": inference_params,
}
)
elif provider == "mistral":
## LOAD CONFIG
config = litellm.AmazonMistralConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
else:
data = json.dumps({})
@ -723,12 +899,49 @@ def completion(
if provider == "ai21":
outputText = response_body.get("completions")[0].get("data").get("text")
elif provider == "anthropic":
outputText = response_body["completion"]
model_response["finish_reason"] = response_body["stop_reason"]
if model.startswith("anthropic.claude-3"):
outputText = response_body.get("content")[0].get("text", None)
if "<invoke>" in outputText: # OUTPUT PARSE FUNCTION CALL
function_name = extract_between_tags("tool_name", outputText)[0]
function_arguments_str = extract_between_tags("invoke", outputText)[
0
].strip()
function_arguments_str = (
f"<invoke>{function_arguments_str}</invoke>"
)
function_arguments = parse_xml_params(function_arguments_str)
_message = litellm.Message(
tool_calls=[
{
"id": f"call_{uuid.uuid4()}",
"type": "function",
"function": {
"name": function_name,
"arguments": json.dumps(function_arguments),
},
}
],
content=None,
)
model_response.choices[0].message = _message # type: ignore
model_response["finish_reason"] = response_body["stop_reason"]
_usage = litellm.Usage(
prompt_tokens=response_body["usage"]["input_tokens"],
completion_tokens=response_body["usage"]["output_tokens"],
total_tokens=response_body["usage"]["input_tokens"]
+ response_body["usage"]["output_tokens"],
)
model_response.usage = _usage
else:
outputText = response_body["completion"]
model_response["finish_reason"] = response_body["stop_reason"]
elif provider == "cohere":
outputText = response_body["generations"][0]["text"]
elif provider == "meta":
outputText = response_body["generation"]
elif provider == "mistral":
outputText = response_body["outputs"][0]["text"]
model_response["finish_reason"] = response_body["outputs"][0]["stop_reason"]
else: # amazon titan
outputText = response_body.get("results")[0].get("outputText")
@ -740,8 +953,19 @@ def completion(
)
else:
try:
if len(outputText) > 0:
if (
len(outputText) > 0
and hasattr(model_response.choices[0], "message")
and getattr(model_response.choices[0].message, "tool_calls", None)
is None
):
model_response["choices"][0]["message"]["content"] = outputText
elif (
hasattr(model_response.choices[0], "message")
and getattr(model_response.choices[0].message, "tool_calls", None)
is not None
):
pass
else:
raise Exception()
except:
@ -751,26 +975,28 @@ def completion(
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = response_metadata.get(
"x-amzn-bedrock-input-token-count", len(encoding.encode(prompt))
)
completion_tokens = response_metadata.get(
"x-amzn-bedrock-output-token-count",
len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
),
)
if getattr(model_response.usage, "total_tokens", None) is None:
prompt_tokens = response_metadata.get(
"x-amzn-bedrock-input-token-count", len(encoding.encode(prompt))
)
completion_tokens = response_metadata.get(
"x-amzn-bedrock-output-token-count",
len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
),
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
model_response._hidden_params["region_name"] = client.meta.region_name
print_verbose(f"model_response._hidden_params: {model_response._hidden_params}")
return model_response

View file

@ -634,8 +634,43 @@ class Huggingface(BaseLLM):
status_code=r.status_code,
message=str(text),
)
"""
Check first chunk for error message.
If error message, raise error.
If not - add back to stream
"""
# Async iterator over the lines in the response body
response_iterator = r.aiter_lines()
# Attempt to get the first line/chunk from the response
try:
first_chunk = await response_iterator.__anext__()
except StopAsyncIteration:
# Handle the case where there are no lines to read (empty response)
first_chunk = ""
# Check the first chunk for an error message
if (
"error" in first_chunk.lower()
): # Adjust this condition based on how error messages are structured
raise HuggingfaceError(
status_code=400,
message=first_chunk,
)
# Create a new async generator that begins with the first_chunk and includes the remaining items
async def custom_stream_with_first_chunk():
yield first_chunk # Yield back the first chunk
async for (
chunk
) in response_iterator: # Continue yielding the rest of the chunks
yield chunk
# Creating a new completion stream that starts with the first chunk
completion_stream = custom_stream_with_first_chunk()
streamwrapper = CustomStreamWrapper(
completion_stream=r.aiter_lines(),
completion_stream=completion_stream,
model=model,
custom_llm_provider="huggingface",
logging_obj=logging_obj,

View file

@ -18,7 +18,7 @@ class OllamaError(Exception):
) # Call the base class constructor with the parameters it needs
class OllamaConfig:
class OllamaChatConfig:
"""
Reference: https://github.com/jmorganca/ollama/blob/main/docs/api.md#parameters
@ -108,6 +108,7 @@ class OllamaConfig:
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and k != "function_name" # special param for function calling
and not isinstance(
v,
(
@ -120,6 +121,61 @@ class OllamaConfig:
and v is not None
}
def get_supported_openai_params(
self,
):
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"frequency_penalty",
"stop",
"tools",
"tool_choice",
"functions",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["num_predict"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "frequency_penalty":
optional_params["repeat_penalty"] = param
if param == "stop":
optional_params["stop"] = value
### FUNCTION CALLING LOGIC ###
if param == "tools":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
optional_params["functions_unsupported_model"] = value
if len(optional_params["functions_unsupported_model"]) == 1:
optional_params["function_name"] = optional_params[
"functions_unsupported_model"
][0]["function"]["name"]
if param == "functions":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
optional_params["functions_unsupported_model"] = non_default_params.pop(
"functions"
)
non_default_params.pop("tool_choice", None) # causes ollama requests to hang
return optional_params
# ollama implementation
def get_ollama_response(
@ -138,7 +194,7 @@ def get_ollama_response(
url = f"{api_base}/api/chat"
## Load Config
config = litellm.OllamaConfig.get_config()
config = litellm.OllamaChatConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
@ -147,6 +203,7 @@ def get_ollama_response(
stream = optional_params.pop("stream", False)
format = optional_params.pop("format", None)
function_name = optional_params.pop("function_name", None)
for m in messages:
if "role" in m and m["role"] == "tool":
@ -187,6 +244,7 @@ def get_ollama_response(
model_response=model_response,
encoding=encoding,
logging_obj=logging_obj,
function_name=function_name,
)
return response
elif stream == True:
@ -290,7 +348,9 @@ async def ollama_async_streaming(url, data, model_response, encoding, logging_ob
traceback.print_exc()
async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
async def ollama_acompletion(
url, data, model_response, encoding, logging_obj, function_name
):
data["stream"] = False
try:
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
@ -324,7 +384,7 @@ async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
"id": f"call_{str(uuid.uuid4())}",
"function": {
"arguments": response_json["message"]["content"],
"name": "",
"name": function_name or "",
},
"type": "function",
}

View file

@ -1,4 +1,4 @@
from typing import Optional, Union, Any
from typing import Optional, Union, Any, BinaryIO
import types, time, json, traceback
import httpx
from .base import BaseLLM
@ -9,6 +9,7 @@ from litellm.utils import (
CustomStreamWrapper,
convert_to_model_response_object,
Usage,
TranscriptionResponse,
)
from typing import Callable, Optional
import aiohttp, requests
@ -237,14 +238,22 @@ class OpenAIChatCompletion(BaseLLM):
status_code=422, message=f"Timeout needs to be a float"
)
if custom_llm_provider == "mistral":
# check if message content passed in as list, and not string
messages = prompt_factory(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
)
if custom_llm_provider != "openai":
# process all OpenAI compatible provider logic here
if custom_llm_provider == "mistral":
# check if message content passed in as list, and not string
messages = prompt_factory(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
)
if custom_llm_provider == "perplexity" and messages is not None:
# check if messages.name is passed + supported, if not supported remove
messages = prompt_factory(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
)
for _ in range(
2
): # if call fails due to alternating messages, retry with reformatted message
@ -744,6 +753,7 @@ class OpenAIChatCompletion(BaseLLM):
# return response
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore
except OpenAIError as e:
exception_mapping_worked = True
## LOGGING
logging_obj.post_call(
@ -766,6 +776,105 @@ class OpenAIChatCompletion(BaseLLM):
else:
raise OpenAIError(status_code=500, message=str(e))
def audio_transcriptions(
self,
model: str,
audio_file: BinaryIO,
optional_params: dict,
model_response: TranscriptionResponse,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
max_retries=None,
logging_obj=None,
atranscription: bool = False,
):
data = {"model": model, "file": audio_file, **optional_params}
if atranscription == True:
return self.async_audio_transcriptions(
audio_file=audio_file,
data=data,
model_response=model_response,
timeout=timeout,
api_key=api_key,
api_base=api_base,
client=client,
max_retries=max_retries,
logging_obj=logging_obj,
)
if client is None:
openai_client = OpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.client_session,
timeout=timeout,
max_retries=max_retries,
)
else:
openai_client = client
response = openai_client.audio.transcriptions.create(
**data, timeout=timeout # type: ignore
)
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return final_response
async def async_audio_transcriptions(
self,
audio_file: BinaryIO,
data: dict,
model_response: TranscriptionResponse,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
max_retries=None,
logging_obj=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncOpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.aclient_session,
timeout=timeout,
max_retries=max_retries,
)
else:
openai_aclient = client
response = await openai_aclient.audio.transcriptions.create(
**data, timeout=timeout
) # type: ignore
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
async def ahealth_check(
self,
model: Optional[str],

View file

@ -1,8 +1,10 @@
from enum import Enum
import requests, traceback
import json
import json, re, xml.etree.ElementTree as ET
from jinja2 import Template, exceptions, Environment, meta
from typing import Optional, Any
import imghdr, base64
from typing import List
def default_pt(messages):
@ -110,9 +112,9 @@ def mistral_instruct_pt(messages):
"post_message": " [/INST]\n",
},
"user": {"pre_message": "[INST] ", "post_message": " [/INST]\n"},
"assistant": {"pre_message": " ", "post_message": " "},
"assistant": {"pre_message": " ", "post_message": "</s> "},
},
final_prompt_value="</s>",
final_prompt_value="",
messages=messages,
)
return prompt
@ -390,7 +392,7 @@ def format_prompt_togetherai(messages, prompt_format, chat_template):
return prompt
###
### ANTHROPIC ###
def anthropic_pt(
@ -424,6 +426,232 @@ def anthropic_pt(
return prompt
def construct_format_parameters_prompt(parameters: dict):
parameter_str = "<parameter>\n"
for k, v in parameters.items():
parameter_str += f"<{k}>"
parameter_str += f"{v}"
parameter_str += f"</{k}>"
parameter_str += "\n</parameter>"
return parameter_str
def construct_format_tool_for_claude_prompt(name, description, parameters):
constructed_prompt = (
"<tool_description>\n"
f"<tool_name>{name}</tool_name>\n"
"<description>\n"
f"{description}\n"
"</description>\n"
"<parameters>\n"
f"{construct_format_parameters_prompt(parameters)}\n"
"</parameters>\n"
"</tool_description>"
)
return constructed_prompt
def construct_tool_use_system_prompt(
tools,
): # from https://github.com/anthropics/anthropic-cookbook/blob/main/function_calling/function_calling.ipynb
tool_str_list = []
for tool in tools:
tool_str = construct_format_tool_for_claude_prompt(
tool["function"]["name"],
tool["function"].get("description", ""),
tool["function"].get("parameters", {}),
)
tool_str_list.append(tool_str)
tool_use_system_prompt = (
"In this environment you have access to a set of tools you can use to answer the user's question.\n"
"\n"
"You may call them like this:\n"
"<function_calls>\n"
"<invoke>\n"
"<tool_name>$TOOL_NAME</tool_name>\n"
"<parameters>\n"
"<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>\n"
"...\n"
"</parameters>\n"
"</invoke>\n"
"</function_calls>\n"
"\n"
"Here are the tools available:\n"
"<tools>\n" + "\n".join([tool_str for tool_str in tool_str_list]) + "\n</tools>"
)
return tool_use_system_prompt
def convert_url_to_base64(url):
import requests
import base64
for _ in range(3):
try:
response = requests.get(url)
break
except:
pass
if response.status_code == 200:
image_bytes = response.content
base64_image = base64.b64encode(image_bytes).decode("utf-8")
img_type = url.split(".")[-1].lower()
if img_type == "jpg" or img_type == "jpeg":
img_type = "image/jpeg"
elif img_type == "png":
img_type = "image/png"
elif img_type == "gif":
img_type = "image/gif"
elif img_type == "webp":
img_type = "image/webp"
else:
raise Exception(
f"Error: Unsupported image format. Format={img_type}. Supported types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']"
)
return f"data:{img_type};base64,{base64_image}"
else:
raise Exception(f"Error: Unable to fetch image from URL. url={url}")
def convert_to_anthropic_image_obj(openai_image_url: str):
"""
Input:
"image_url": "data:image/jpeg;base64,{base64_image}",
Return:
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": {base64_image},
}
"""
try:
if openai_image_url.startswith("http"):
openai_image_url = convert_url_to_base64(url=openai_image_url)
# Extract the base64 image data
base64_data = openai_image_url.split("data:image/")[1].split(";base64,")[1]
# Infer image format from the URL
image_format = openai_image_url.split("data:image/")[1].split(";base64,")[0]
return {
"type": "base64",
"media_type": f"image/{image_format}",
"data": base64_data,
}
except Exception as e:
if "Error: Unable to fetch image from URL" in str(e):
raise e
raise Exception(
"""Image url not in expected format. Example Expected input - "image_url": "data:image/jpeg;base64,{base64_image}". Supported formats - ['image/jpeg', 'image/png', 'image/gif', 'image/webp'] """
)
def anthropic_messages_pt(messages: list):
"""
format messages for anthropic
1. Anthropic supports roles like "user" and "assistant", (here litellm translates system-> assistant)
2. The first message always needs to be of role "user"
3. Each message must alternate between "user" and "assistant" (this is not addressed as now by litellm)
4. final assistant content cannot end with trailing whitespace (anthropic raises an error otherwise)
5. System messages are a separate param to the Messages API (used for tool calling)
6. Ensure we only accept role, content. (message.name is not supported)
"""
## Ensure final assistant message has no trailing whitespace
last_assistant_message_idx: Optional[int] = None
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
new_messages = []
if len(messages) == 1:
# check if the message is a user message
if messages[0]["role"] == "assistant":
new_messages.append({"role": "user", "content": ""})
# check if content is a list (vision)
if isinstance(messages[0]["content"], list): # vision input
new_content = []
for m in messages[0]["content"]:
if m.get("type", "") == "image_url":
new_content.append(
{
"type": "image",
"source": convert_to_anthropic_image_obj(
m["image_url"]["url"]
),
}
)
elif m.get("type", "") == "text":
new_content.append({"type": "text", "text": m["text"]})
new_messages.append({"role": messages[0]["role"], "content": new_content}) # type: ignore
else:
new_messages.append(
{"role": messages[0]["role"], "content": messages[0]["content"]}
)
return new_messages
for i in range(len(messages) - 1): # type: ignore
if i == 0 and messages[i]["role"] == "assistant":
new_messages.append({"role": "user", "content": ""})
if isinstance(messages[i]["content"], list): # vision input
new_content = []
for m in messages[i]["content"]:
if m.get("type", "") == "image_url":
new_content.append(
{
"type": "image",
"source": convert_to_anthropic_image_obj(
m["image_url"]["url"]
),
}
)
elif m.get("type", "") == "text":
new_content.append({"type": "text", "content": m["text"]})
new_messages.append({"role": messages[i]["role"], "content": new_content}) # type: ignore
else:
new_messages.append(
{"role": messages[i]["role"], "content": messages[i]["content"]}
)
if messages[i]["role"] == messages[i + 1]["role"]:
if messages[i]["role"] == "user":
new_messages.append({"role": "assistant", "content": ""})
else:
new_messages.append({"role": "user", "content": ""})
if messages[i]["role"] == "assistant":
last_assistant_message_idx = i
new_messages.append(messages[-1])
if last_assistant_message_idx is not None:
new_messages[last_assistant_message_idx]["content"] = new_messages[
last_assistant_message_idx
][
"content"
].strip() # no trailing whitespace for final assistant message
return new_messages
def extract_between_tags(tag: str, string: str, strip: bool = False) -> List[str]:
ext_list = re.findall(f"<{tag}>(.+?)</{tag}>", string, re.DOTALL)
if strip:
ext_list = [e.strip() for e in ext_list]
return ext_list
def parse_xml_params(xml_content):
root = ET.fromstring(xml_content)
params = {}
for child in root.findall(".//parameters/*"):
params[child.tag] = child.text
return params
###
def amazon_titan_pt(
messages: list,
): # format - https://github.com/BerriAI/litellm/issues/1896
@ -650,10 +878,9 @@ def prompt_factory(
if custom_llm_provider == "ollama":
return ollama_pt(model=model, messages=messages)
elif custom_llm_provider == "anthropic":
if any(_ in model for _ in ["claude-2.1", "claude-v2:1"]):
return claude_2_1_pt(messages=messages)
else:
if model == "claude-instant-1" or model == "claude-2":
return anthropic_pt(messages=messages)
return anthropic_messages_pt(messages=messages)
elif custom_llm_provider == "together_ai":
prompt_format, chat_template = get_model_info(token=api_key, model=model)
return format_prompt_togetherai(
@ -674,6 +901,12 @@ def prompt_factory(
return claude_2_1_pt(messages=messages)
else:
return anthropic_pt(messages=messages)
elif "mistral." in model:
return mistral_instruct_pt(messages=messages)
elif custom_llm_provider == "perplexity":
for message in messages:
message.pop("name", None)
return messages
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)

View file

@ -104,7 +104,8 @@ def start_prediction(
version_id = version_id.replace("deployments/", "")
base_url = f"https://api.replicate.com/v1/deployments/{version_id}"
print_verbose(f"Deployment base URL: {base_url}\n")
else: # assume it's a model
base_url = f"https://api.replicate.com/v1/models/{version_id}"
headers = {
"Authorization": f"Token {api_token}",
"Content-Type": "application/json",
@ -306,9 +307,9 @@ def completion(
result, logs = handle_prediction_response(
prediction_url, api_key, print_verbose
)
model_response[
"ended"
] = time.time() # for pricing this must remain right after calling api
model_response["ended"] = (
time.time()
) # for pricing this must remain right after calling api
## LOGGING
logging_obj.post_call(
input=prompt,

View file

@ -1047,6 +1047,7 @@ def embedding(
vertex_project=None,
vertex_location=None,
aembedding=False,
print_verbose=None,
):
# logic for parsing in - calling - parsing out model embedding calls
try:
@ -1062,7 +1063,13 @@ def embedding(
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
try:
print_verbose(
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
)
creds, _ = google.auth.default(quota_project_id=vertex_project)
print_verbose(
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
)
vertexai.init(
project=vertex_project, location=vertex_location, credentials=creds
)

View file

@ -8,10 +8,11 @@
# Thank you ! We ❤️ you! - Krrish & Ishaan
import os, openai, sys, json, inspect, uuid, datetime, threading
from typing import Any, Literal, Union
from typing import Any, Literal, Union, BinaryIO
from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx
import litellm
from ._logging import verbose_logger
@ -39,6 +40,7 @@ from litellm.utils import (
)
from .llms import (
anthropic,
anthropic_text,
together_ai,
ai21,
sagemaker,
@ -87,6 +89,7 @@ from litellm.utils import (
read_config_args,
Choices,
Message,
TranscriptionResponse,
)
####### ENVIRONMENT VARIABLES ###################
@ -486,6 +489,8 @@ def completion(
### ASYNC CALLS ###
acompletion = kwargs.get("acompletion", False)
client = kwargs.get("client", None)
### Admin Controls ###
no_log = kwargs.get("no-log", False)
######## end of unpacking kwargs ###########
openai_params = [
"functions",
@ -561,7 +566,8 @@ def completion(
"preset_cache_key",
"caching_groups",
"ttl",
"cache"
"cache",
"no-log",
]
default_params = openai_params + litellm_params
non_default_params = {
@ -725,6 +731,7 @@ def completion(
model_info=model_info,
proxy_server_request=proxy_server_request,
preset_cache_key=preset_cache_key,
no_log=no_log,
)
logging.update_environment_variables(
model=model,
@ -1018,28 +1025,55 @@ def completion(
or litellm.api_key
or os.environ.get("ANTHROPIC_API_KEY")
)
api_base = (
api_base
or litellm.api_base
or get_secret("ANTHROPIC_API_BASE")
or "https://api.anthropic.com/v1/complete"
)
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
response = anthropic.completion(
model=model,
messages=messages,
api_base=api_base,
custom_prompt_dict=litellm.custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding, # for calculating input/output tokens
api_key=api_key,
logging_obj=logging,
headers=headers,
)
if (model == "claude-2") or (model == "claude-instant-1"):
# call anthropic /completion, only use this route for claude-2, claude-instant-1
api_base = (
api_base
or litellm.api_base
or get_secret("ANTHROPIC_API_BASE")
or "https://api.anthropic.com/v1/complete"
)
response = anthropic_text.completion(
model=model,
messages=messages,
api_base=api_base,
custom_prompt_dict=litellm.custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding, # for calculating input/output tokens
api_key=api_key,
logging_obj=logging,
headers=headers,
)
else:
# call /messages
# default route for all anthropic models
api_base = (
api_base
or litellm.api_base
or get_secret("ANTHROPIC_API_BASE")
or "https://api.anthropic.com/v1/messages"
)
response = anthropic.completion(
model=model,
messages=messages,
api_base=api_base,
custom_prompt_dict=litellm.custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding, # for calculating input/output tokens
api_key=api_key,
logging_obj=logging,
headers=headers,
)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(
@ -2389,6 +2423,7 @@ def embedding(
"caching_groups",
"ttl",
"cache",
"no-log",
]
default_params = openai_params + litellm_params
non_default_params = {
@ -2589,6 +2624,7 @@ def embedding(
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
aembedding=aembedding,
print_verbose=print_verbose,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
@ -3014,7 +3050,6 @@ def moderation(
return response
##### Moderation #######################
@client
async def amoderation(input: str, model: str, api_key: Optional[str] = None, **kwargs):
# only supports open ai for now
@ -3037,11 +3072,11 @@ async def aimage_generation(*args, **kwargs):
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
Parameters:
- `args` (tuple): Positional arguments to be passed to the `embedding` function.
- `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.
- `args` (tuple): Positional arguments to be passed to the `image_generation` function.
- `kwargs` (dict): Keyword arguments to be passed to the `image_generation` function.
Returns:
- `response` (Any): The response returned by the `embedding` function.
- `response` (Any): The response returned by the `image_generation` function.
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
@ -3063,7 +3098,7 @@ async def aimage_generation(*args, **kwargs):
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
if isinstance(init_response, dict) or isinstance(
init_response, ModelResponse
init_response, ImageResponse
): ## CACHING SCENARIO
response = init_response
elif asyncio.iscoroutine(init_response):
@ -3281,6 +3316,144 @@ def image_generation(
)
##### Transcription #######################
@client
async def atranscription(*args, **kwargs):
"""
Calls openai + azure whisper endpoints.
Allows router to load balance between them
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO Image Generation ###
kwargs["atranscription"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(transcription, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
if isinstance(init_response, dict) or isinstance(
init_response, TranscriptionResponse
): ## CACHING SCENARIO
response = init_response
elif asyncio.iscoroutine(init_response):
response = await init_response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
return response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model,
custom_llm_provider=custom_llm_provider,
original_exception=e,
completion_kwargs=args,
)
@client
def transcription(
model: str,
file: BinaryIO,
## OPTIONAL OPENAI PARAMS ##
language: Optional[str] = None,
prompt: Optional[str] = None,
response_format: Optional[
Literal["json", "text", "srt", "verbose_json", "vtt"]
] = None,
temperature: Optional[int] = None, # openai defaults this to 0
## LITELLM PARAMS ##
user: Optional[str] = None,
timeout=600, # default to 10 minutes
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
litellm_logging_obj=None,
custom_llm_provider=None,
**kwargs,
):
"""
Calls openai + azure whisper endpoints.
Allows router to load balance between them
"""
atranscription = kwargs.get("atranscription", False)
litellm_call_id = kwargs.get("litellm_call_id", None)
logger_fn = kwargs.get("logger_fn", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", {})
model_response = litellm.utils.TranscriptionResponse()
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
optional_params = {
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": None, # openai defaults this to 0
}
if custom_llm_provider == "azure":
# azure configs
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
api_version = (
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
)
azure_ad_token = kwargs.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
api_key = (
api_key
or litellm.api_key
or litellm.azure_key
or get_secret("AZURE_API_KEY")
)
response = azure_chat_completions.audio_transcriptions(
model=model,
audio_file=file,
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
timeout=timeout,
logging_obj=litellm_logging_obj,
api_base=api_base,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
)
elif custom_llm_provider == "openai":
response = openai_chat_completions.audio_transcriptions(
model=model,
audio_file=file,
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
timeout=timeout,
logging_obj=litellm_logging_obj,
)
return response
##### Health Endpoints #######################

View file

@ -108,7 +108,7 @@
},
"gpt-3.5-turbo": {
"max_tokens": 4097,
"max_input_tokens": 4097,
"max_input_tokens": 16385,
"max_output_tokens": 4096,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
@ -293,6 +293,18 @@
"output_cost_per_pixel": 0.0,
"litellm_provider": "openai"
},
"whisper-1": {
"mode": "audio_transcription",
"input_cost_per_second": 0,
"output_cost_per_second": 0.0001,
"litellm_provider": "openai"
},
"azure/whisper-1": {
"mode": "audio_transcription",
"input_cost_per_second": 0,
"output_cost_per_second": 0.0001,
"litellm_provider": "azure"
},
"azure/gpt-4-0125-preview": {
"max_tokens": 128000,
"max_input_tokens": 128000,
@ -424,6 +436,23 @@
"mode": "chat",
"supports_function_calling": true
},
"azure/gpt-3.5-turbo-instruct-0914": {
"max_tokens": 4097,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
"litellm_provider": "text-completion-openai",
"mode": "completion"
},
"azure/gpt-35-turbo-instruct": {
"max_tokens": 4097,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
"litellm_provider": "text-completion-openai",
"mode": "completion"
},
"azure/mistral-large-latest": {
"max_tokens": 32000,
"input_cost_per_token": 0.000008,
@ -537,6 +566,14 @@
"litellm_provider": "text-completion-openai",
"mode": "completion"
},
"gpt-3.5-turbo-instruct-0914": {
"max_tokens": 4097,
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002,
"litellm_provider": "text-completion-openai",
"mode": "completion"
},
"claude-instant-1": {
"max_tokens": 100000,
"max_output_tokens": 8191,
@ -618,6 +655,22 @@
"litellm_provider": "anthropic",
"mode": "chat"
},
"claude-3-opus-20240229": {
"max_tokens": 200000,
"max_output_tokens": 4096,
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000075,
"litellm_provider": "anthropic",
"mode": "chat"
},
"claude-3-sonnet-20240229": {
"max_tokens": 200000,
"max_output_tokens": 4096,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000015,
"litellm_provider": "anthropic",
"mode": "chat"
},
"text-bison": {
"max_tokens": 8192,
"input_cost_per_token": 0.000000125,
@ -1211,6 +1264,29 @@
"litellm_provider": "bedrock",
"mode": "embedding"
},
"bedrock/us-west-2/mistral.mixtral-8x7b-instruct": {
"max_tokens": 32000,
"input_cost_per_token": 0.00000045,
"output_cost_per_token": 0.0000007,
"litellm_provider": "bedrock",
"mode": "completion"
},
"bedrock/us-west-2/mistral.mistral-7b-instruct": {
"max_tokens": 32000,
"input_cost_per_token": 0.00000015,
"output_cost_per_token": 0.0000002,
"litellm_provider": "bedrock",
"mode": "completion"
},
"anthropic.claude-3-sonnet-20240229-v1:0": {
"max_tokens": 200000,
"max_input_tokens": 200000,
"max_output_tokens": 4096,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000015,
"litellm_provider": "bedrock",
"mode": "chat"
},
"anthropic.claude-v1": {
"max_tokens": 100000,
"max_output_tokens": 8191,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/16eb955147cb6b2f.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/32e93a3d13512de5.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-6b93c4e1d000ff14.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-6b93c4e1d000ff14.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/16eb955147cb6b2f.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[9125,[\"730\",\"static/chunks/730-1411b729a1c79695.js\",\"931\",\"static/chunks/app/page-ad3e13d2fec661b5.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/16eb955147cb6b2f.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"SP1Cm97dc_3zo4HlsJJjg\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-59d9232c3e7a8be6.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-59d9232c3e7a8be6.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/32e93a3d13512de5.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[57492,[\"730\",\"static/chunks/730-1411b729a1c79695.js\",\"931\",\"static/chunks/app/page-2ed0bc91ffef505b.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/32e93a3d13512de5.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"ZF-EluyKCEJoZptE3dOXT\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[9125,["730","static/chunks/730-1411b729a1c79695.js","931","static/chunks/app/page-ad3e13d2fec661b5.js"],""]
3:I[57492,["730","static/chunks/730-1411b729a1c79695.js","931","static/chunks/app/page-2ed0bc91ffef505b.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["SP1Cm97dc_3zo4HlsJJjg",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/16eb955147cb6b2f.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["ZF-EluyKCEJoZptE3dOXT",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/32e93a3d13512de5.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"🚅 LiteLLM"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -33,6 +33,9 @@ class LiteLLMBase(BaseModel):
# if using pydantic v1
return self.__fields_set__
class Config:
protected_namespaces = ()
######### Request Class Definition ######
class ProxyChatCompletionRequest(LiteLLMBase):
@ -151,6 +154,7 @@ class GenerateRequestBase(LiteLLMBase):
rpm_limit: Optional[int] = None
budget_duration: Optional[str] = None
allowed_cache_controls: Optional[list] = []
soft_budget: Optional[float] = None
class GenerateKeyRequest(GenerateRequestBase):
@ -208,6 +212,12 @@ class KeyRequest(LiteLLMBase):
keys: List[str]
class LiteLLM_ModelTable(LiteLLMBase):
model_aliases: Optional[str] = None # json dump the dict
created_by: str
updated_by: str
class NewUserRequest(GenerateKeyRequest):
max_budget: Optional[float] = None
user_email: Optional[str] = None
@ -247,9 +257,10 @@ class Member(LiteLLMBase):
return values
class NewTeamRequest(LiteLLMBase):
class TeamBase(LiteLLMBase):
team_alias: Optional[str] = None
team_id: Optional[str] = None
organization_id: Optional[str] = None
admins: list = []
members: list = []
members_with_roles: List[Member] = []
@ -260,6 +271,14 @@ class NewTeamRequest(LiteLLMBase):
models: list = []
class NewTeamRequest(TeamBase):
model_aliases: Optional[dict] = None
class GlobalEndUsersSpend(LiteLLMBase):
api_key: Optional[str] = None
class TeamMemberAddRequest(LiteLLMBase):
team_id: str
member: Member
@ -290,11 +309,12 @@ class DeleteTeamRequest(LiteLLMBase):
team_ids: List[str] # required
class LiteLLM_TeamTable(NewTeamRequest):
class LiteLLM_TeamTable(TeamBase):
spend: Optional[float] = None
max_parallel_requests: Optional[int] = None
budget_duration: Optional[str] = None
budget_reset_at: Optional[datetime] = None
model_id: Optional[int] = None
@root_validator(pre=True)
def set_model_info(cls, values):
@ -304,6 +324,7 @@ class LiteLLM_TeamTable(NewTeamRequest):
"config",
"permissions",
"model_max_budget",
"model_aliases",
]
for field in dict_fields:
value = values.get(field)
@ -320,6 +341,49 @@ class TeamRequest(LiteLLMBase):
teams: List[str]
class LiteLLM_BudgetTable(LiteLLMBase):
"""Represents user-controllable params for a LiteLLM_BudgetTable record"""
soft_budget: Optional[float] = None
max_budget: Optional[float] = None
max_parallel_requests: Optional[int] = None
tpm_limit: Optional[int] = None
rpm_limit: Optional[int] = None
model_max_budget: Optional[dict] = None
budget_duration: Optional[str] = None
class NewOrganizationRequest(LiteLLM_BudgetTable):
organization_alias: str
models: List = []
budget_id: Optional[str] = None
class LiteLLM_OrganizationTable(LiteLLMBase):
"""Represents user-controllable params for a LiteLLM_OrganizationTable record"""
organization_alias: Optional[str] = None
budget_id: str
metadata: Optional[dict] = None
models: List[str]
created_by: str
updated_by: str
class NewOrganizationResponse(LiteLLM_OrganizationTable):
organization_id: str
created_at: datetime
updated_at: datetime
class OrganizationRequest(LiteLLMBase):
organizations: List[str]
class BudgetRequest(LiteLLMBase):
budgets: List[str]
class KeyManagementSystem(enum.Enum):
GOOGLE_KMS = "google_kms"
AZURE_KEY_VAULT = "azure_key_vault"
@ -489,6 +553,8 @@ class LiteLLM_VerificationTokenView(LiteLLM_VerificationToken):
team_tpm_limit: Optional[int] = None
team_rpm_limit: Optional[int] = None
team_max_budget: Optional[float] = None
soft_budget: Optional[float] = None
team_model_aliases: Optional[Dict] = None
class UserAPIKeyAuth(
@ -538,6 +604,7 @@ class LiteLLM_SpendLogs(LiteLLMBase):
request_id: str
api_key: str
model: Optional[str] = ""
api_base: Optional[str] = ""
call_type: str
spend: Optional[float] = 0.0
total_tokens: Optional[int] = 0

View file

@ -71,7 +71,9 @@ class _PROXY_MaxParallelRequestsHandler(CustomLogger):
):
self.print_verbose(f"Inside Max Parallel Request Pre-Call Hook")
api_key = user_api_key_dict.api_key
max_parallel_requests = user_api_key_dict.max_parallel_requests or sys.maxsize
max_parallel_requests = user_api_key_dict.max_parallel_requests
if max_parallel_requests is None:
max_parallel_requests = sys.maxsize
tpm_limit = getattr(user_api_key_dict, "tpm_limit", sys.maxsize)
if tpm_limit is None:
tpm_limit = sys.maxsize
@ -105,6 +107,10 @@ class _PROXY_MaxParallelRequestsHandler(CustomLogger):
and rpm_limit == sys.maxsize
):
pass
elif max_parallel_requests == 0 or tpm_limit == 0 or rpm_limit == 0:
raise HTTPException(
status_code=429, detail="Max parallel request limit reached."
)
elif current is None:
new_val = {
"current_requests": 1,

View file

@ -16,9 +16,18 @@ from importlib import resources
import shutil
telemetry = None
default_num_workers = 1
try:
default_num_workers = os.cpu_count() or 1
if default_num_workers is not None and default_num_workers > 0:
default_num_workers -= 1
except:
pass
def append_query_params(url, params):
print(f"url: {url}")
print(f"params: {params}")
parsed_url = urlparse.urlparse(url)
parsed_query = urlparse.parse_qs(parsed_url.query)
parsed_query.update(params)
@ -52,10 +61,10 @@ def is_port_in_use(port):
@click.option(
"--host", default="0.0.0.0", help="Host for the server to listen on.", envvar="HOST"
)
@click.option("--port", default=8000, help="Port to bind the server to.", envvar="PORT")
@click.option("--port", default=4000, help="Port to bind the server to.", envvar="PORT")
@click.option(
"--num_workers",
default=1,
default=default_num_workers,
help="Number of gunicorn workers to spin up",
envvar="NUM_WORKERS",
)
@ -264,7 +273,7 @@ def run_server(
],
}
response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
response = requests.post("http://0.0.0.0:4000/queue/request", json=data)
response = response.json()
@ -498,7 +507,7 @@ def run_server(
print(
f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
)
if port == 8000 and is_port_in_use(port):
if port == 4000 and is_port_in_use(port):
port = random.randint(1024, 49152)
from litellm.proxy.proxy_server import app

View file

@ -5,63 +5,9 @@ model_list:
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
mode: chat
max_tokens: 4096
base_model: azure/gpt-4-1106-preview
access_groups: ["public"]
- model_name: openai-gpt-3.5
litellm_params:
model: gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["public"]
- model_name: anthropic-claude-v2.1
litellm_params:
model: bedrock/anthropic.claude-v2:1
timeout: 300 # sets a 5 minute timeout
model_info:
access_groups: ["private"]
- model_name: anthropic-claude-v2
litellm_params:
model: bedrock/anthropic.claude-v2
- model_name: bedrock-cohere
litellm_params:
model: bedrock/cohere.command-text-v14
timeout: 0.0001
- model_name: gpt-4
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env. See https://docs.litellm.ai/docs/simple_proxy#load-api-keys-from-vault
model_info:
base_model: azure/gpt-4
- model_name: text-moderation-stable
litellm_params:
model: text-moderation-stable
api_key: os.environ/OPENAI_API_KEY
litellm_settings:
fallbacks: [{"openai-gpt-3.5": ["azure-gpt-3.5"]}]
success_callback: ['langfuse']
# setting callback class
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
general_settings:
master_key: sk-1234
alerting: ["slack"]
alerting_threshold: 10 # sends alerts if requests hang for 2 seconds
# database_type: "dynamo_db"
# database_args: { # 👈 all args - https://github.com/BerriAI/litellm/blob/befbcbb7ac8f59835ce47415c128decf37aac328/litellm/proxy/_types.py#L190
# "billing_mode": "PAY_PER_REQUEST",
# "region_name": "us-west-2",
# "ssl_verify": False
# }
environment_variables:
# otel: True # OpenTelemetry Logger
# master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
set_verbose: True
success_callback: ["langfuse"]
router_settings:
set_verbose: True
debug_level: "DEBUG"

View file

@ -0,0 +1,6 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: openai/my-fake-model
api_key: my-fake-key
api_base: http://0.0.0.0:8090

View file

@ -0,0 +1,27 @@
from locust import HttpUser, task, between
class MyUser(HttpUser):
wait_time = between(1, 5)
@task
def chat_completion(self):
headers = {
"Content-Type": "application/json",
# Include any additional headers you may need for authentication, etc.
}
# Customize the payload with "model" and "messages" keys
payload = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a chat bot."},
{"role": "user", "content": "Hello, how are you?"},
],
# Add more data as necessary
}
# Make a POST request to the "chat/completions" endpoint
response = self.client.post("chat/completions", json=payload, headers=headers)
# Print or log the response if needed

View file

@ -0,0 +1,50 @@
# import sys, os
# sys.path.insert(
# 0, os.path.abspath("../")
# ) # Adds the parent directory to the system path
from fastapi import FastAPI, Request, status, HTTPException, Depends
from fastapi.responses import StreamingResponse
from fastapi.security import OAuth2PasswordBearer
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# for completion
@app.post("/chat/completions")
@app.post("/v1/chat/completions")
async def completion(request: Request):
return {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "\n\nHello there, how may I assist you today?",
},
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21},
}
if __name__ == "__main__":
import uvicorn
# run this on 8090, 8091, 8092 and 8093
uvicorn.run(app, host="0.0.0.0", port=8090)

File diff suppressed because it is too large Load diff

View file

@ -7,10 +7,57 @@ generator client {
provider = "prisma-client-py"
}
// Budget / Rate Limits for an org
model LiteLLM_BudgetTable {
budget_id String @id @default(uuid())
max_budget Float?
soft_budget Float?
max_parallel_requests Int?
tpm_limit BigInt?
rpm_limit BigInt?
model_max_budget Json?
budget_duration String?
budget_reset_at DateTime?
created_at DateTime @default(now()) @map("created_at")
created_by String
updated_at DateTime @default(now()) @updatedAt @map("updated_at")
updated_by String
organization LiteLLM_OrganizationTable[] // multiple orgs can have the same budget
keys LiteLLM_VerificationToken[] // multiple keys can have the same budget
}
model LiteLLM_OrganizationTable {
organization_id String @id @default(uuid())
organization_alias String
budget_id String
metadata Json @default("{}")
models String[]
spend Float @default(0.0)
model_spend Json @default("{}")
created_at DateTime @default(now()) @map("created_at")
created_by String
updated_at DateTime @default(now()) @updatedAt @map("updated_at")
updated_by String
litellm_budget_table LiteLLM_BudgetTable? @relation(fields: [budget_id], references: [budget_id])
teams LiteLLM_TeamTable[]
}
// Model info for teams, just has model aliases for now.
model LiteLLM_ModelTable {
id Int @id @default(autoincrement())
model_aliases Json? @map("aliases")
created_at DateTime @default(now()) @map("created_at")
created_by String
updated_at DateTime @default(now()) @updatedAt @map("updated_at")
updated_by String
team LiteLLM_TeamTable?
}
// Assign prod keys to groups, not individuals
model LiteLLM_TeamTable {
team_id String @unique
team_id String @id @default(uuid())
team_alias String?
organization_id String?
admins String[]
members String[]
members_with_roles Json @default("{}")
@ -27,11 +74,14 @@ model LiteLLM_TeamTable {
updated_at DateTime @default(now()) @updatedAt @map("updated_at")
model_spend Json @default("{}")
model_max_budget Json @default("{}")
model_id Int? @unique
litellm_organization_table LiteLLM_OrganizationTable? @relation(fields: [organization_id], references: [organization_id])
litellm_model_table LiteLLM_ModelTable? @relation(fields: [model_id], references: [id])
}
// Track spend, rate limit, budget Users
model LiteLLM_UserTable {
user_id String @unique
user_id String @id
team_id String?
teams String[] @default([])
user_role String?
@ -51,9 +101,10 @@ model LiteLLM_UserTable {
// Generate Tokens for Proxy
model LiteLLM_VerificationToken {
token String @unique
token String @id
key_name String?
key_alias String?
soft_budget_cooldown Boolean @default(false) // key-level state on if budget alerts need to be cooled down
spend Float @default(0.0)
expires DateTime?
models String[]
@ -72,6 +123,8 @@ model LiteLLM_VerificationToken {
allowed_cache_controls String[] @default([])
model_spend Json @default("{}")
model_max_budget Json @default("{}")
budget_id String?
litellm_budget_table LiteLLM_BudgetTable? @relation(fields: [budget_id], references: [budget_id])
}
// store proxy config.yaml
@ -82,7 +135,7 @@ model LiteLLM_Config {
// View spend, model, api_key per request
model LiteLLM_SpendLogs {
request_id String @unique
request_id String @id
call_type String
api_key String @default ("")
spend Float @default(0.0)
@ -92,19 +145,21 @@ model LiteLLM_SpendLogs {
startTime DateTime // Assuming start_time is a DateTime field
endTime DateTime // Assuming end_time is a DateTime field
model String @default("")
api_base String @default("")
user String @default("")
metadata Json @default("{}")
cache_hit String @default("")
cache_key String @default("")
request_tags Json @default("[]")
team_id String?
end_user String?
end_user String?
}
// Beta - allow team members to request access to a model
model LiteLLM_UserNotifications {
request_id String @unique
request_id String @id
user_id String
models String[]
justification String
status String // approved, disapproved, pending
}
}

View file

@ -0,0 +1,82 @@
text = """
{{Short description|Military commander and king of Macedon (356323 BC)}}
{{About|the ancient king of Macedonia}}
{{Good article}}
{{pp-semi-indef}}
{{pp-move-indef}}
{{Use Oxford spelling|date=September 2020}}
{{Use dmy dates|date=January 2023}}
{{Infobox royalty
| name = Alexander the Great
| title = [[Basileus]]
| image = Alexander the Great mosaic (cropped).jpg
| caption = Alexander in the ''[[Alexander Mosaic]]''
| succession = [[King of Macedon]]
| reign = 336323 BC
| predecessor = [[Philip II of Macedon|Philip II]]
| successor = {{hlist|
| [[Alexander IV of Macedon|Alexander IV]]
| [[Philip III of Macedon|Philip III]]
}}
| succession2 = [[Hegemony#8th1st centuries BC|Hegemon]] of the [[League of Corinth|Hellenic League]]
| reign2 = 336323 BC
| predecessor2 = Philip II
| successor2 = [[Demetrius I of Macedon]]
| succession3 = [[List of pharaohs|Pharaoh of Egypt]]
| reign3 = 332323 BC
| predecessor3 = [[Darius III]]
| successor3 = {{hlist|
| Alexander IV
| Philip III
{{Ancient Egyptian royal titulary case |nomen={{ubl|{{transliteration|egy|ꜣrwksjndrs}}|{{transliteration|egy|Aluksindres}}|Alexandros}} |nomen_hiero=<hiero>A-rw:k:z-i-n:d:r:z</hiero> |horus={{ubl|{{transliteration|egy|mk-kmt}}|{{transliteration|egy|Mekemet}}|Protector of Egypt}} {{Infobox pharaoh/Serekh |Horus=<hiero>S-HqA-q:n:nw-D40</hiero>}}{{pb}}Second Horus name:{{ubl|{{transliteration|egy|ḥḳꜣ-ḳnj tkn-ḫꜣswt}}|{{transliteration|egy|Heqaqeni tekenkhasut}}|The brave ruler who has attacked foreign lands}} {{Infobox pharaoh/Serekh |Horus=<hiero>HqA-q:n:nw:D40-t:k:n:D54-N25:N25:N25</hiero>}}{{pb}}Third Horus name:{{ubl|{{transliteration|egy|ḥḳꜣ ḥḳꜣw nw tꜣ (r) ḏr-f}}|{{transliteration|egy|Heqa heqau nu ta (er) djeref}}|The ruler of the rulers of the entire land}} {{Infobox pharaoh/Serekh |Horus=<hiero>HqA-q-HqA-HqA-q-N33-nw-N33-N17:N34-r:f</hiero>}}Fourth Horus name:{{ubl|{{transliteration|egy|ṯmꜣ-}}|{{transliteration|egy|Tjema'a}}|The sturdy-armed one}} {{Infobox pharaoh/Serekh |Horus=<hiero>T:mA-a</hiero>}} |nebty={{ubl|{{transliteration|egy|mꜣj wr-pḥty jṯ ḏww tꜣw ḫꜣswt}}|{{transliteration|egy|Mai werpehty itj dju tau khasut}}|The lion, great of might, who takes possession of mountains, lands, and deserts}} |nebty_hiero=<hiero>E23-wr:r-F9:F9-V15-N25:N25:N33-N17:N17:N33-N25:N25:N33</hiero> |golden={{ubl|{{transliteration|egy|kꜣ (nḫt) ḫwj bꜣḳ(t) ḥḳꜣ wꜣḏ(-wr) šnw n jtn}}|{{transliteration|egy|Ka (nakht) khui baq(et) heqa wadj(wer) shenu en Aten}}|The (strong) bull who protects Egypt, the ruler of the sea and of what the sun encircles}} |golden_hiero=<hiero>E1:n-i-w*x-D40-q:t-b-</hiero>{{pb}}<hiero>D10-HqA-M14-N35A-V9:Z1-i-t:n:HASH</hiero> |prenomen={{ubl|{{transliteration|egy|stp.n-rꜥ mrj-jmn}}|{{transliteration|egy|Setepenre meryamun}}|Chosen by Ra, beloved by Amun{{pb}}{{Infobox pharaoh/Prenomen |Prenomen=<hiero>C2\-C12-stp:n:N36</hiero>}}{{pb}}{{Infobox pharaoh/Prenomen |Prenomen=<hiero>mr\-C12\-C2-stp:n</hiero>}}}}}}
}}
| succession4 = [[King of Persia]]
| reign4 = 330323 BC
| predecessor4 = Darius III
| successor4 = {{hlist|
| Alexander IV
| Philip III
}}
| full name =
| spouse = {{hlist|
| [[Roxana]]
| [[Stateira (wife of Alexander the Great)|Stateira]]
| [[Parysatis II|Parysatis]]
}}
| issue = {{plainlist|
* [[Alexander IV of Macedon|Alexander IV]]
* [[Heracles of Macedon|Heracles]]{{Cref2|a}}
}}
| native_lang1 = [[Ancient Greek|Greek]]
| native_lang1_name1 = {{lang|grc|Ἀλέξανδρος}}{{Cref2|b}}
| house = [[Argead dynasty|Argead]]
| house-type = Dynasty
| father = [[Philip II of Macedon]]
| mother = [[Olympias|Olympias of Epirus]]
| birth_date = 20 or 21 July 356 BC
| birth_place = [[Pella]], [[Macedonia (ancient kingdom)|Macedon]]
| death_date = 10 or 11 June 323 BC (aged 32)<!-- 32 years, 10 months and 20 days (approx.) -->
| death_place = [[Babylon]], [[Mesopotamia]], Macedonian Empire
| religion = [[Ancient Greek religion]]
}}
'''Alexander III of Macedon''' ({{lang-grc|[[wikt:Ἀλέξανδρος|Ἀλέξανδρος]]|Alexandros}}; 20/21 July 356 BC 10/11 June 323 BC), most commonly known as '''Alexander the Great''',{{Cref2|c}} was a king of the [[Ancient Greece|ancient Greek]] kingdom of [[Macedonia (ancient kingdom)|Macedon]].{{Cref2|d}} He succeeded his father [[Philip II of Macedon|Philip II]] to the throne in 336 BC at the age of 20 and spent most of his ruling years conducting a lengthy [[military campaign]] throughout [[Western Asia]], [[Central Asia]], parts of [[South Asia]], and [[ancient Egypt|Egypt]]. By the age of 30, he had created one of the [[List of largest empires|largest empires]] in history, stretching from [[History of Greece|Greece]] to northwestern [[Historical India|India]].<ref>Bloom, Jonathan M.; Blair, Sheila S. (2009) ''The Grove Encyclopedia of Islamic Art and Architecture: Mosul to Zirid, Volume 3''. (Oxford University Press Incorporated, 2009), 385; "[Khojand, Tajikistan]; As the easternmost outpost of the empire of Alexander the Great, the city was renamed Alexandria Eschate ("furthest Alexandria") in 329 BCE."{{pb}}Golden, Peter B. ''Central Asia in World History'' (Oxford University Press, 2011), 25;"[...] his campaigns in Central Asia brought Khwarazm, Sogdia and Bactria under Graeco-Macedonian rule. As elsewhere, Alexander founded or renamed a number of cities, such as Alexandria Eschate ("Outernmost Alexandria", near modern Khojent in Tajikistan)."</ref> He was undefeated in battle and is widely considered to be one of history's greatest and most successful military commanders.{{Sfn |Yenne|2010 | page = 159}}<ref>{{cite encyclopedia|title=Alexander the Great's Achievements|encyclopedia=Britannica|url=https://www.britannica.com/summary/Alexander-the-Greats-Achievements|access-date=19 August 2021|archive-date=2 July 2021|archive-url=https://web.archive.org/web/20210702234248/https://www.britannica.com/summary/Alexander-the-Greats-Achievements|url-status=live}} "Alexander the Great was one of the greatest military strategists and leaders in world history."</ref>
Until the age of 16, Alexander was tutored by [[Aristotle]]. In 335 BC, shortly after his assumption of kingship over Macedon, he [[Alexander's Balkan campaign|campaigned in the Balkans]] and reasserted control over [[Thrace]] and parts of [[Illyria]] before marching on the city of [[Thebes, Greece|Thebes]], which was [[Battle of Thebes|subsequently destroyed in battle]]. Alexander then led the [[League of Corinth]], and used his authority to launch the [[Greek nationalism#History|pan-Hellenic project]] envisaged by his father, assuming leadership over all [[Greeks]] in their conquest of [[Greater Iran|Persia]].{{sfn|Heckel|Tritle|2009|p=99}}<ref>{{cite book |last1=Burger |first1=Michael |title=The Shaping of Western Civilization: From Antiquity to the Enlightenment |date=2008 |publisher=University of Toronto Press |isbn=978-1-55111-432-3 |page=76}}</ref>
In 334 BC, he invaded the [[Achaemenid Empire|Achaemenid Persian Empire]] and began [[Wars of Alexander the Great#Persia|a series of campaigns]] that lasted for 10 years. Following his conquest of [[Asia Minor]], Alexander broke the power of Achaemenid Persia in a series of decisive battles, including those at [[Battle of Issus|Issus]] and [[Battle of Gaugamela|Gaugamela]]; he subsequently overthrew [[Darius III]] and conquered the Achaemenid Empire in its entirety.{{Cref2|e}} After the fall of Persia, the [[Macedonian Empire]] held a vast swath of territory between the [[Adriatic Sea]] and the [[Indus River]]. Alexander endeavored to reach the "ends of the world and the Great Outer Sea" and [[Indian campaign of Alexander the Great|invaded India]] in 326 BC, achieving an important victory over [[Porus]], an ancient Indian king of present-day [[Punjab]], at the [[Battle of the Hydaspes]]. Due to the demand of his homesick troops, he eventually turned back at the [[Beas River]] and later died in 323 BC in [[Babylon]], the city of [[Mesopotamia]] that he had planned to establish as his empire's capital. [[Death of Alexander the Great|Alexander's death]] left unexecuted an additional series of planned military and mercantile campaigns that would have begun with a Greek invasion of [[Arabian Peninsula|Arabia]]. In the years following his death, [[Wars of the Diadochi|a series of civil wars]] broke out across the Macedonian Empire, eventually leading to its disintegration at the hands of the [[Diadochi]].
With his death marking the start of the [[Hellenistic period]], Alexander's legacy includes the [[cultural diffusion]] and [[syncretism]] that his conquests engendered, such as [[Greco-Buddhism]] and [[Hellenistic Judaism]]. [[List of cities founded by Alexander the Great|He founded more than twenty cities]], with the most prominent being the city of [[Alexandria]] in Egypt. Alexander's settlement of [[Greek colonisation|Greek colonists]] and the resulting spread of [[Culture of Greece|Greek culture]] led to the overwhelming dominance of [[Hellenistic civilization]] and influence as far east as the [[Indian subcontinent]]. The Hellenistic period developed through the [[Roman Empire]] into modern [[Western culture]]; the [[Greek language]] became the ''[[lingua franca]]'' of the region and was the predominant language of the [[Byzantine Empire]] up until its collapse in the mid-15th century AD. Alexander became legendary as a classical hero in the mould of [[Achilles]], featuring prominently in the historical and mythical traditions of both Greek and non-Greek cultures. His military achievements and unprecedented enduring successes in battle made him the measure against which many later military leaders would compare themselves,{{cref2|f}} and his tactics remain a significant subject of study in [[Military academy|military academies]] worldwide.{{Sfn|Yenne|2010|page=viii}}
{{TOC limit|3}}
==Early life==
===Lineage and childhood===
[[File:Archaeological Site of Pella by Joy of Museums.jpg|thumb|upright=1.2|Archaeological site of [[Pella]], Greece, Alexander's birthplace]]
{{Alexander the Great series}}
Alexander III was born in [[Pella]], the capital of the [[Macedonia (ancient kingdom)|Kingdom of Macedon]],<ref>{{cite book |last=Green |first=Peter |title=Alexander of Macedon, 356323 B.C.: a historical biography |url=https://books.google.com/books?id=g6Wl4AKGQkIC&pg=PA559 |page=xxxiii |year=1970 |series=Hellenistic culture and society |edition=illustrated, revised reprint |publisher=University of California Press |isbn=978-0-520-07165-0 |quote=356 Alexander born in Pella. The exact date is not known, but probably either 20 or 26 July. |access-date=20 June 2015}}</ref> on the sixth day of the [[Ancient Greek calendars|ancient Greek month]] of [[Attic calendar|Hekatombaion]], which probably corresponds to 20 July 356 BC (although the exact date is uncertain).<ref>Plutarch, ''Life of Alexander'' 3.5: {{cite web |url=https://www.livius.org/aj-al/alexander/alexander_t32.html#7 |title=The birth of Alexander the Great |work=Livius|archive-url=https://web.archive.org/web/20150320180439/https://www.livius.org/aj-al/alexander/alexander_t32.html|archive-date=20 March 2015|url-status = dead |access-date=16 December 2011 |quote=Alexander was born the sixth of [[Attic calendar|Hekatombaion]].}}</ref><ref>{{cite book |author=David George Hogarth |date=1897 |title=Philip and Alexander of Macedon : two essays in biography |url=https://archive.org/details/cu31924028251217/page/n321/mode/2up?view=theater |location=New York |publisher=Charles Scribner's Sons |pages=286287 |access-date=9 November 2021}}</ref> He was the son of the erstwhile king of Macedon, [[Philip II of Macedon|Philip II]], and his fourth wife, [[Olympias]] (daughter of [[Neoptolemus I of Epirus|Neoptolemus I]], king of [[Epirus (ancient state)|Epirus]]).<ref>{{harvnb|McCarty|2004|p=10}}, {{harvnb|Renault|2001|p=28}}, {{harvnb|Durant|1966|p=538}}</ref>{{Cref2|g}} Although Philip had seven or eight wives, Olympias was his principal wife for some time, likely because she gave birth to Alexander.{{sfn|Roisman|Worthington|2010|p=171}}
Several legends surround Alexander's birth and childhood.{{sfn|Roisman|Worthington|2010|p=188}} According to the [[Ancient Greeks|ancient Greek]] biographer [[Plutarch]], on the eve of the consummation of her marriage to Philip, Olympias dreamed that her womb was struck by a thunderbolt that caused a flame to spread "far and wide" before dying away. Sometime after the wedding, Philip is said to have seen himself, in a dream, securing his wife's womb with a [[Seal (emblem)|seal]] engraved with a lion's image.<ref name="PA2" /> Plutarch offered a variety of interpretations for these dreams: that Olympias was pregnant before her marriage, indicated by the sealing of her womb; or that Alexander's father was [[Zeus]]. Ancient commentators were divided about whether the ambitious Olympias promulgated the story of Alexander's divine parentage, variously claiming that she had told Alexander, or that she dismissed the suggestion as impious.<ref name="PA2" />
"""

View file

@ -1,20 +1,24 @@
import time, asyncio
from openai import AsyncOpenAI
import time, asyncio, os
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback
from large_text import text
from dotenv import load_dotenv
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:8000", api_key="any")
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="azure-gpt-3.5",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
model="fake_openai",
messages=[
{
"role": "user",
"content": f"{text}. Who was alexander the great? {uuid.uuid4()}",
}
],
)
print(response)
return response
except Exception as e:
@ -25,9 +29,9 @@ async def litellm_completion():
async def main():
for i in range(150):
for i in range(6):
start = time.time()
n = 150 # Number of concurrent tasks
n = 20 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
@ -41,7 +45,6 @@ async def main():
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
time.sleep(10)
if __name__ == "__main__":

View file

@ -64,6 +64,7 @@ class ProxyLogging:
litellm.callbacks.append(self.max_parallel_request_limiter)
litellm.callbacks.append(self.max_budget_limiter)
litellm.callbacks.append(self.cache_control_check)
litellm.success_callback.append(self.response_taking_too_long_callback)
for callback in litellm.callbacks:
if callback not in litellm.input_callback:
litellm.input_callback.append(callback)
@ -95,7 +96,11 @@ class ProxyLogging:
user_api_key_dict: UserAPIKeyAuth,
data: dict,
call_type: Literal[
"completion", "embeddings", "image_generation", "moderation"
"completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
],
):
"""
@ -142,6 +147,30 @@ class ProxyLogging:
raise e
return data
async def response_taking_too_long_callback(
self,
kwargs, # kwargs to completion
completion_response, # response from completion
start_time,
end_time, # start/end time
):
if self.alerting is None:
return
time_difference = end_time - start_time
# Convert the timedelta to float (in seconds)
time_difference_float = time_difference.total_seconds()
litellm_params = kwargs.get("litellm_params", {})
api_base = litellm_params.get("api_base", "")
model = kwargs.get("model", "")
messages = kwargs.get("messages", "")
request_info = f"\nRequest Model: `{model}`\nAPI Base: `{api_base}`\nMessages: `{messages}`"
slow_message = f"`Responses are slow - {round(time_difference_float,2)}s response time > Alerting threshold: {self.alerting_threshold}s`"
if time_difference_float > self.alerting_threshold:
await self.alerting_handler(
message=slow_message + request_info,
level="Low",
)
async def response_taking_too_long(
self,
start_time: Optional[float] = None,
@ -163,11 +192,11 @@ class ProxyLogging:
# try casting messages to str and get the first 100 characters, else mark as None
try:
messages = str(messages)
messages = messages[:10000]
messages = messages[:100]
except:
messages = None
request_info = f"\nRequest Model: {model}\nMessages: {messages}"
request_info = f"\nRequest Model: `{model}`\nMessages: `{messages}`"
else:
request_info = ""
@ -182,23 +211,13 @@ class ProxyLogging:
):
# only alert hanging responses if they have not been marked as success
alerting_message = (
f"Requests are hanging - {self.alerting_threshold}s+ request time"
f"`Requests are hanging - {self.alerting_threshold}s+ request time`"
)
await self.alerting_handler(
message=alerting_message + request_info,
level="Medium",
)
elif (
type == "slow_response" and start_time is not None and end_time is not None
):
slow_message = f"Responses are slow - {round(end_time-start_time,2)}s response time > Alerting threshold: {self.alerting_threshold}s"
if end_time - start_time > self.alerting_threshold:
await self.alerting_handler(
message=slow_message + request_info,
level="Low",
)
async def budget_alerts(
self,
type: Literal[
@ -207,6 +226,7 @@ class ProxyLogging:
"user_and_proxy_budget",
"failed_budgets",
"failed_tracking",
"projected_limit_exceeded",
],
user_max_budget: float,
user_current_spend: float,
@ -240,6 +260,23 @@ class ProxyLogging:
level="High",
)
return
elif type == "projected_limit_exceeded" and user_info is not None:
"""
Input variables:
user_info = {
"key_alias": key_alias,
"projected_spend": projected_spend,
"projected_exceeded_date": projected_exceeded_date,
}
user_max_budget=soft_limit,
user_current_spend=new_spend
"""
message = f"""\n🚨 `ProjectedLimitExceededError` 💸\n\n`Key Alias:` {user_info["key_alias"]} \n`Expected Day of Error`: {user_info["projected_exceeded_date"]} \n`Current Spend`: {user_current_spend} \n`Projected Spend at end of month`: {user_info["projected_spend"]} \n`Soft Limit`: {user_max_budget}"""
await self.alerting_handler(
message=message,
level="High",
)
return
else:
user_info = str(user_info)
# percent of max_budget left to spend
@ -303,7 +340,7 @@ class ProxyLogging:
# Get the current timestamp
current_time = datetime.now().strftime("%H:%M:%S")
formatted_message = (
f"Level: {level}\nTimestamp: {current_time}\n\nMessage: {message}"
f"Level: `{level}`\nTimestamp: `{current_time}`\n\nMessage: {message}"
)
if self.alerting is None:
return
@ -329,7 +366,7 @@ class ProxyLogging:
else:
raise Exception("Missing SENTRY_DSN from environment")
async def failure_handler(self, original_exception):
async def failure_handler(self, original_exception, traceback_str=""):
"""
Log failed db read/writes
@ -340,6 +377,8 @@ class ProxyLogging:
error_message = original_exception.detail
else:
error_message = str(original_exception)
if isinstance(traceback_str, str):
error_message += traceback_str[:1000]
asyncio.create_task(
self.alerting_handler(
message=f"DB read/write call failed: {error_message}",
@ -477,7 +516,11 @@ class PrismaClient:
for k, v in db_data.items():
if isinstance(v, dict):
db_data[k] = json.dumps(v)
try:
db_data[k] = json.dumps(v)
except:
# This avoids Prisma retrying this 5 times, and making 5 clients
db_data[k] = "failed-to-serialize-json"
return db_data
@backoff.on_exception(
@ -654,6 +697,9 @@ class PrismaClient:
"""
Generic implementation of get data
"""
verbose_proxy_logger.debug(
f"PrismaClient: get_generic_data: {key}, table_name: {table_name}"
)
try:
if table_name == "users":
response = await self.db.litellm_usertable.find_first(
@ -673,8 +719,15 @@ class PrismaClient:
)
return response
except Exception as e:
import traceback
error_msg = f"LiteLLM Prisma Client Exception get_generic_data: {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -712,6 +765,10 @@ class PrismaClient:
int
] = None, # pagination, number of rows to getch when find_all==True
):
args_passed_in = locals()
verbose_proxy_logger.debug(
f"PrismaClient: get_data: token={token}, table_name: {table_name}, query_type: {query_type}, user_id: {user_id}, user_id_list: {user_id_list}, team_id: {team_id}, team_id_list: {team_id_list}, key_val: {key_val}"
)
try:
response: Any = None
if (token is not None and table_name is None) or (
@ -733,7 +790,8 @@ class PrismaClient:
detail={"error": f"No token passed in. Token={token}"},
)
response = await self.db.litellm_verificationtoken.find_unique(
where={"token": hashed_token}
where={"token": hashed_token},
include={"litellm_budget_table": True},
)
if response is not None:
# for prisma we need to cast the expires time to str
@ -741,9 +799,16 @@ class PrismaClient:
response.expires, datetime
):
response.expires = response.expires.isoformat()
else:
# Token does not exist.
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=f"Authentication Error: invalid user key - user key does not exist in db. User Key={token}",
)
elif query_type == "find_all" and user_id is not None:
response = await self.db.litellm_verificationtoken.find_many(
where={"user_id": user_id}
where={"user_id": user_id},
include={"litellm_budget_table": True},
)
if response is not None and len(response) > 0:
for r in response:
@ -751,7 +816,8 @@ class PrismaClient:
r.expires = r.expires.isoformat()
elif query_type == "find_all" and team_id is not None:
response = await self.db.litellm_verificationtoken.find_many(
where={"team_id": team_id}
where={"team_id": team_id},
include={"litellm_budget_table": True},
)
if response is not None and len(response) > 0:
for r in response:
@ -794,7 +860,9 @@ class PrismaClient:
hashed_tokens.append(t)
where_filter["token"]["in"] = hashed_tokens
response = await self.db.litellm_verificationtoken.find_many(
order={"spend": "desc"}, where=where_filter # type: ignore
order={"spend": "desc"},
where=where_filter, # type: ignore
include={"litellm_budget_table": True},
)
if response is not None:
return response
@ -914,12 +982,21 @@ class PrismaClient:
)
sql_query = f"""
SELECT *
FROM "LiteLLM_VerificationTokenView"
WHERE token = '{token}'
SELECT
v.*,
t.spend AS team_spend,
t.max_budget AS team_max_budget,
t.tpm_limit AS team_tpm_limit,
t.rpm_limit AS team_rpm_limit,
m.aliases as team_model_aliases
FROM "LiteLLM_VerificationToken" AS v
LEFT JOIN "LiteLLM_TeamTable" AS t ON v.team_id = t.team_id
LEFT JOIN "LiteLLM_ModelTable" m ON t.model_id = m.id
WHERE v.token = '{token}'
"""
response = await self.db.query_first(query=sql_query)
if response is not None:
response = LiteLLM_VerificationTokenView(**response)
# for prisma we need to cast the expires time to str
@ -929,12 +1006,17 @@ class PrismaClient:
response.expires = response.expires.isoformat()
return response
except Exception as e:
print_verbose(f"LiteLLM Prisma Client Exception: {e}")
import traceback
traceback.print_exc()
prisma_query_info = f"LiteLLM Prisma Client Exception: Error with `get_data`. Args passed in: {args_passed_in}"
error_msg = prisma_query_info + str(e)
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
verbose_proxy_logger.debug(error_traceback)
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -957,6 +1039,7 @@ class PrismaClient:
Add a key to the database. If it already exists, do nothing.
"""
try:
verbose_proxy_logger.debug(f"PrismaClient: insert_data: {data}")
if table_name == "key":
token = data["token"]
hashed_token = self.hash_token(token=token)
@ -1054,9 +1137,15 @@ class PrismaClient:
return new_user_notification_row
except Exception as e:
print_verbose(f"LiteLLM Prisma Client Exception: {e}")
import traceback
error_msg = f"LiteLLM Prisma Client Exception in insert_data: {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -1083,6 +1172,9 @@ class PrismaClient:
"""
Update existing data
"""
verbose_proxy_logger.debug(
f"PrismaClient: update_data, table_name: {table_name}"
)
try:
db_data = self.jsonify_object(data=data)
if update_key_values is not None:
@ -1102,7 +1194,13 @@ class PrismaClient:
+ f"DB Token Table update succeeded {response}"
+ "\033[0m"
)
return {"token": token, "data": db_data}
_data: dict = {}
if response is not None:
try:
_data = response.model_dump() # type: ignore
except Exception as e:
_data = response.dict()
return {"token": token, "data": _data}
elif (
user_id is not None
or (table_name is not None and table_name == "user")
@ -1190,9 +1288,11 @@ class PrismaClient:
if t.token.startswith("sk-"): # type: ignore
t.token = self.hash_token(token=t.token) # type: ignore
try:
data_json = self.jsonify_object(data=t.model_dump())
data_json = self.jsonify_object(
data=t.model_dump(exclude_none=True)
)
except:
data_json = self.jsonify_object(data=t.dict())
data_json = self.jsonify_object(data=t.dict(exclude_none=True))
batcher.litellm_verificationtoken.update(
where={"token": t.token}, # type: ignore
data={**data_json}, # type: ignore
@ -1231,10 +1331,16 @@ class PrismaClient:
"\033[91m" + f"DB User Table Batch update succeeded" + "\033[0m"
)
except Exception as e:
import traceback
error_msg = f"LiteLLM Prisma Client Exception - update_data: {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
print_verbose("\033[91m" + f"DB write failed: {e}" + "\033[0m")
raise e
# Define a retrying strategy with exponential backoff
@ -1285,8 +1391,15 @@ class PrismaClient:
where={"team_id": {"in": team_id_list}}
)
except Exception as e:
import traceback
error_msg = f"LiteLLM Prisma Client Exception - delete_data: {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -1309,8 +1422,15 @@ class PrismaClient:
)
await self.db.connect()
except Exception as e:
import traceback
error_msg = f"LiteLLM Prisma Client Exception connect(): {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -1326,8 +1446,15 @@ class PrismaClient:
try:
await self.db.disconnect()
except Exception as e:
import traceback
error_msg = f"LiteLLM Prisma Client Exception disconnect(): {str(e)}"
print_verbose(error_msg)
error_traceback = error_msg + "\n" + traceback.format_exc()
asyncio.create_task(
self.proxy_logging_obj.failure_handler(original_exception=e)
self.proxy_logging_obj.failure_handler(
original_exception=e, traceback_str=error_traceback
)
)
raise e
@ -1550,10 +1677,28 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
if api_key is not None and isinstance(api_key, str) and api_key.startswith("sk-"):
# hash the api_key
api_key = hash_token(api_key)
if "headers" in metadata and "authorization" in metadata["headers"]:
metadata["headers"].pop(
"authorization"
) # do not store the original `sk-..` api key in the db
# clean up litellm metadata
if isinstance(metadata, dict):
clean_metadata = {}
verbose_proxy_logger.debug(
f"getting payload for SpendLogs, available keys in metadata: "
+ str(list(metadata.keys()))
)
for key in metadata:
if key in [
"headers",
"endpoint",
"model_group",
"deployment",
"model_info",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = metadata[key]
if litellm.cache is not None:
cache_key = litellm.cache.get_cache_key(**kwargs)
else:
@ -1577,7 +1722,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
"team_id": kwargs.get("litellm_params", {})
.get("metadata", {})
.get("user_api_key_team_id", ""),
"metadata": metadata,
"metadata": clean_metadata,
"cache_key": cache_key,
"spend": kwargs.get("response_cost", 0),
"total_tokens": usage.get("total_tokens", 0),
@ -1585,6 +1730,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
"completion_tokens": usage.get("completion_tokens", 0),
"request_tags": metadata.get("tags", []),
"end_user": kwargs.get("user", ""),
"api_base": litellm_params.get("api_base", ""),
}
verbose_proxy_logger.debug(f"SpendTable: created payload - payload: {payload}\n\n")
@ -1712,6 +1858,69 @@ async def _read_request_body(request):
return {}
def _is_projected_spend_over_limit(
current_spend: float, soft_budget_limit: Optional[float]
):
from datetime import date
if soft_budget_limit is None:
# If there's no limit, we can't exceed it.
return False
today = date.today()
# Finding the first day of the next month, then subtracting one day to get the end of the current month.
if today.month == 12: # December edge case
end_month = date(today.year + 1, 1, 1) - timedelta(days=1)
else:
end_month = date(today.year, today.month + 1, 1) - timedelta(days=1)
remaining_days = (end_month - today).days
# Check for the start of the month to avoid division by zero
if today.day == 1:
daily_spend_estimate = current_spend
else:
daily_spend_estimate = current_spend / (today.day - 1)
# Total projected spend for the month
projected_spend = current_spend + (daily_spend_estimate * remaining_days)
if projected_spend > soft_budget_limit:
print_verbose("Projected spend exceeds soft budget limit!")
return True
return False
def _get_projected_spend_over_limit(
current_spend: float, soft_budget_limit: Optional[float]
) -> Optional[tuple]:
import datetime
if soft_budget_limit is None:
return None
today = datetime.date.today()
end_month = datetime.date(today.year, today.month + 1, 1) - datetime.timedelta(
days=1
)
remaining_days = (end_month - today).days
daily_spend = current_spend / (
today.day - 1
) # assuming the current spend till today (not including today)
projected_spend = daily_spend * remaining_days
if projected_spend > soft_budget_limit:
approx_days = soft_budget_limit / daily_spend
limit_exceed_date = today + datetime.timedelta(days=approx_days)
# return the projected spend and the date it will exceeded
return projected_spend, limit_exceed_date
return None
def _is_valid_team_configs(team_id=None, team_config=None, request_data=None):
if team_id is None or team_config is None or request_data is None:
return

Some files were not shown because too many files have changed in this diff Show more