forked from phoenix/litellm-mirror
refactor(bedrock.py): better exception mapping for bedrock + huggingface
This commit is contained in:
parent
ab54262d37
commit
7c46e85ed6
2 changed files with 158 additions and 141 deletions
|
@ -278,151 +278,163 @@ def completion(
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
):
|
):
|
||||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
exception_mapping_worked = False
|
||||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
||||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
||||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
||||||
|
|
||||||
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
|
||||||
client = optional_params.pop(
|
|
||||||
"aws_bedrock_client",
|
|
||||||
# only pass variables that are not None
|
|
||||||
init_bedrock_client(
|
|
||||||
aws_access_key_id=aws_access_key_id,
|
|
||||||
aws_secret_access_key=aws_secret_access_key,
|
|
||||||
aws_region_name=aws_region_name,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
model = model
|
|
||||||
provider = model.split(".")[0]
|
|
||||||
prompt = convert_messages_to_prompt(model, messages, provider, custom_prompt_dict)
|
|
||||||
inference_params = copy.deepcopy(optional_params)
|
|
||||||
stream = inference_params.pop("stream", False)
|
|
||||||
if provider == "anthropic":
|
|
||||||
## LOAD CONFIG
|
|
||||||
config = litellm.AmazonAnthropicConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
inference_params[k] = v
|
|
||||||
data = json.dumps({
|
|
||||||
"prompt": prompt,
|
|
||||||
**inference_params
|
|
||||||
})
|
|
||||||
elif provider == "ai21":
|
|
||||||
## LOAD CONFIG
|
|
||||||
config = litellm.AmazonAI21Config.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
inference_params[k] = v
|
|
||||||
|
|
||||||
data = json.dumps({
|
|
||||||
"prompt": prompt,
|
|
||||||
**inference_params
|
|
||||||
})
|
|
||||||
elif provider == "cohere":
|
|
||||||
## LOAD CONFIG
|
|
||||||
config = litellm.AmazonCohereConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
inference_params[k] = v
|
|
||||||
if optional_params.get("stream", False) == True:
|
|
||||||
inference_params["stream"] = True # cohere requires stream = True in inference params
|
|
||||||
data = json.dumps({
|
|
||||||
"prompt": prompt,
|
|
||||||
**inference_params
|
|
||||||
})
|
|
||||||
elif provider == "amazon": # amazon titan
|
|
||||||
## LOAD CONFIG
|
|
||||||
config = litellm.AmazonTitanConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if k not in inference_params: # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
inference_params[k] = v
|
|
||||||
|
|
||||||
data = json.dumps({
|
|
||||||
"inputText": prompt,
|
|
||||||
"textGenerationConfig": inference_params,
|
|
||||||
})
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=prompt,
|
|
||||||
api_key="",
|
|
||||||
additional_args={"complete_input_dict": data},
|
|
||||||
)
|
|
||||||
|
|
||||||
## COMPLETION CALL
|
|
||||||
accept = 'application/json'
|
|
||||||
contentType = 'application/json'
|
|
||||||
if stream == True:
|
|
||||||
response = client.invoke_model_with_response_stream(
|
|
||||||
body=data,
|
|
||||||
modelId=model,
|
|
||||||
accept=accept,
|
|
||||||
contentType=contentType
|
|
||||||
)
|
|
||||||
response = response.get('body')
|
|
||||||
return response
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = client.invoke_model(
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||||
body=data,
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||||
modelId=model,
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||||
accept=accept,
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||||
contentType=contentType
|
|
||||||
|
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
||||||
|
client = optional_params.pop(
|
||||||
|
"aws_bedrock_client",
|
||||||
|
# only pass variables that are not None
|
||||||
|
init_bedrock_client(
|
||||||
|
aws_access_key_id=aws_access_key_id,
|
||||||
|
aws_secret_access_key=aws_secret_access_key,
|
||||||
|
aws_region_name=aws_region_name,
|
||||||
|
),
|
||||||
)
|
)
|
||||||
except Exception as e:
|
|
||||||
raise BedrockError(status_code=500, message=str(e))
|
|
||||||
|
|
||||||
response_body = json.loads(response.get('body').read())
|
model = model
|
||||||
|
provider = model.split(".")[0]
|
||||||
|
prompt = convert_messages_to_prompt(model, messages, provider, custom_prompt_dict)
|
||||||
|
inference_params = copy.deepcopy(optional_params)
|
||||||
|
stream = inference_params.pop("stream", False)
|
||||||
|
if provider == "anthropic":
|
||||||
|
## LOAD CONFIG
|
||||||
|
config = litellm.AmazonAnthropicConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
data = json.dumps({
|
||||||
|
"prompt": prompt,
|
||||||
|
**inference_params
|
||||||
|
})
|
||||||
|
elif provider == "ai21":
|
||||||
|
## LOAD CONFIG
|
||||||
|
config = litellm.AmazonAI21Config.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
|
||||||
## LOGGING
|
data = json.dumps({
|
||||||
logging_obj.post_call(
|
"prompt": prompt,
|
||||||
input=prompt,
|
**inference_params
|
||||||
api_key="",
|
})
|
||||||
original_response=response_body,
|
elif provider == "cohere":
|
||||||
additional_args={"complete_input_dict": data},
|
## LOAD CONFIG
|
||||||
)
|
config = litellm.AmazonCohereConfig.get_config()
|
||||||
print_verbose(f"raw model_response: {response}")
|
for k, v in config.items():
|
||||||
## RESPONSE OBJECT
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
outputText = "default"
|
inference_params[k] = v
|
||||||
if provider == "ai21":
|
if optional_params.get("stream", False) == True:
|
||||||
outputText = response_body.get('completions')[0].get('data').get('text')
|
inference_params["stream"] = True # cohere requires stream = True in inference params
|
||||||
elif provider == "anthropic":
|
data = json.dumps({
|
||||||
outputText = response_body['completion']
|
"prompt": prompt,
|
||||||
model_response["finish_reason"] = response_body["stop_reason"]
|
**inference_params
|
||||||
elif provider == "cohere":
|
})
|
||||||
outputText = response_body["generations"][0]["text"]
|
elif provider == "amazon": # amazon titan
|
||||||
else: # amazon titan
|
## LOAD CONFIG
|
||||||
outputText = response_body.get('results')[0].get('outputText')
|
config = litellm.AmazonTitanConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if k not in inference_params: # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
|
||||||
response_metadata = response.get("ResponseMetadata", {})
|
data = json.dumps({
|
||||||
if response_metadata.get("HTTPStatusCode", 500) >= 400:
|
"inputText": prompt,
|
||||||
raise BedrockError(
|
"textGenerationConfig": inference_params,
|
||||||
message=outputText,
|
})
|
||||||
status_code=response_metadata.get("HTTPStatusCode", 500),
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key="",
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
|
## COMPLETION CALL
|
||||||
|
accept = 'application/json'
|
||||||
|
contentType = 'application/json'
|
||||||
|
if stream == True:
|
||||||
|
response = client.invoke_model_with_response_stream(
|
||||||
|
body=data,
|
||||||
|
modelId=model,
|
||||||
|
accept=accept,
|
||||||
|
contentType=contentType
|
||||||
|
)
|
||||||
|
response = response.get('body')
|
||||||
|
return response
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if len(outputText) > 0:
|
response = client.invoke_model(
|
||||||
model_response["choices"][0]["message"]["content"] = outputText
|
body=data,
|
||||||
except:
|
modelId=model,
|
||||||
raise BedrockError(message=json.dumps(outputText), status_code=response_metadata.get("HTTPStatusCode", 500))
|
accept=accept,
|
||||||
|
contentType=contentType
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise BedrockError(status_code=500, message=str(e))
|
||||||
|
|
||||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
response_body = json.loads(response.get('body').read())
|
||||||
prompt_tokens = len(
|
|
||||||
encoding.encode(prompt)
|
## LOGGING
|
||||||
)
|
logging_obj.post_call(
|
||||||
completion_tokens = len(
|
input=prompt,
|
||||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
api_key="",
|
||||||
)
|
original_response=response_body,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose(f"raw model_response: {response}")
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
outputText = "default"
|
||||||
|
if provider == "ai21":
|
||||||
|
outputText = response_body.get('completions')[0].get('data').get('text')
|
||||||
|
elif provider == "anthropic":
|
||||||
|
outputText = response_body['completion']
|
||||||
|
model_response["finish_reason"] = response_body["stop_reason"]
|
||||||
|
elif provider == "cohere":
|
||||||
|
outputText = response_body["generations"][0]["text"]
|
||||||
|
else: # amazon titan
|
||||||
|
outputText = response_body.get('results')[0].get('outputText')
|
||||||
|
|
||||||
|
response_metadata = response.get("ResponseMetadata", {})
|
||||||
|
if response_metadata.get("HTTPStatusCode", 500) >= 400:
|
||||||
|
raise BedrockError(
|
||||||
|
message=outputText,
|
||||||
|
status_code=response_metadata.get("HTTPStatusCode", 500),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
if len(outputText) > 0:
|
||||||
|
model_response["choices"][0]["message"]["content"] = outputText
|
||||||
|
except:
|
||||||
|
raise BedrockError(message=json.dumps(outputText), status_code=response_metadata.get("HTTPStatusCode", 500))
|
||||||
|
|
||||||
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||||
|
prompt_tokens = len(
|
||||||
|
encoding.encode(prompt)
|
||||||
|
)
|
||||||
|
completion_tokens = len(
|
||||||
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||||
|
)
|
||||||
|
|
||||||
|
model_response["created"] = time.time()
|
||||||
|
model_response["model"] = model
|
||||||
|
model_response.usage.completion_tokens = completion_tokens
|
||||||
|
model_response.usage.prompt_tokens = prompt_tokens
|
||||||
|
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
||||||
|
return model_response
|
||||||
|
except BedrockError as e:
|
||||||
|
exception_mapping_worked = True
|
||||||
|
raise e
|
||||||
|
except Exception as e:
|
||||||
|
if exception_mapping_worked:
|
||||||
|
raise e
|
||||||
|
else:
|
||||||
|
import traceback
|
||||||
|
raise BedrockError(status_code=500, message=traceback.format_exc())
|
||||||
|
|
||||||
model_response["created"] = time.time()
|
|
||||||
model_response["model"] = model
|
|
||||||
model_response.usage.completion_tokens = completion_tokens
|
|
||||||
model_response.usage.prompt_tokens = prompt_tokens
|
|
||||||
model_response.usage.total_tokens = prompt_tokens + completion_tokens
|
|
||||||
return model_response
|
|
||||||
|
|
||||||
|
|
||||||
def embedding(
|
def embedding(
|
||||||
|
|
|
@ -141,6 +141,7 @@ def completion(
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
):
|
):
|
||||||
|
exception_mapping_worked = False
|
||||||
try:
|
try:
|
||||||
headers = validate_environment(api_key, headers)
|
headers = validate_environment(api_key, headers)
|
||||||
task = get_hf_task_for_model(model)
|
task = get_hf_task_for_model(model)
|
||||||
|
@ -365,10 +366,14 @@ def completion(
|
||||||
model_response._hidden_params["original_response"] = completion_response
|
model_response._hidden_params["original_response"] = completion_response
|
||||||
return model_response
|
return model_response
|
||||||
except HuggingfaceError as e:
|
except HuggingfaceError as e:
|
||||||
|
exception_mapping_worked = True
|
||||||
raise e
|
raise e
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
import traceback
|
if exception_mapping_worked:
|
||||||
raise HuggingfaceError(status_code=500, message=traceback.format_exc())
|
raise e
|
||||||
|
else:
|
||||||
|
import traceback
|
||||||
|
raise HuggingfaceError(status_code=500, message=traceback.format_exc())
|
||||||
|
|
||||||
|
|
||||||
def embedding(
|
def embedding(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue