forked from phoenix/litellm-mirror
build(model_prices_and_context_window.json): add model pricing for vertex ai llama 3.1 api
This commit is contained in:
parent
83ef52e180
commit
7df94100e8
6 changed files with 50 additions and 70 deletions
|
@ -357,6 +357,7 @@ vertex_text_models: List = []
|
|||
vertex_code_text_models: List = []
|
||||
vertex_embedding_models: List = []
|
||||
vertex_anthropic_models: List = []
|
||||
vertex_llama3_models: List = []
|
||||
ai21_models: List = []
|
||||
nlp_cloud_models: List = []
|
||||
aleph_alpha_models: List = []
|
||||
|
@ -828,6 +829,7 @@ from .llms.petals import PetalsConfig
|
|||
from .llms.vertex_httpx import VertexGeminiConfig, GoogleAIStudioGeminiConfig
|
||||
from .llms.vertex_ai import VertexAIConfig, VertexAITextEmbeddingConfig
|
||||
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||
from .llms.vertex_ai_llama import VertexAILlama3Config
|
||||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.ollama_chat import OllamaChatConfig
|
||||
|
|
|
@ -53,39 +53,20 @@ class VertexAIError(Exception):
|
|||
|
||||
class VertexAILlama3Config:
|
||||
"""
|
||||
Reference:https://docs.anthropic.com/claude/reference/messages_post
|
||||
Reference:https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama#streaming
|
||||
|
||||
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
|
||||
|
||||
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
|
||||
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
|
||||
|
||||
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
|
||||
The class `VertexAILlama3Config` provides configuration for the VertexAI's Llama API interface. Below are the parameters:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens,
|
||||
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
|
||||
- `temperature` Optional (float) The amount of randomness injected into the response
|
||||
- `top_p` Optional (float) Use nucleus sampling.
|
||||
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
|
||||
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = (
|
||||
4096 # anthropic max - setting this doesn't impact response, but is required by anthropic.
|
||||
)
|
||||
system: Optional[str] = None
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
anthropic_version: Optional[str] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
|
@ -115,61 +96,13 @@ class VertexAILlama3Config:
|
|||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"response_format",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "tool_choice":
|
||||
_tool_choice: Optional[AnthropicMessagesToolChoice] = None
|
||||
if value == "auto":
|
||||
_tool_choice = {"type": "auto"}
|
||||
elif value == "required":
|
||||
_tool_choice = {"type": "any"}
|
||||
elif isinstance(value, dict):
|
||||
_tool_choice = {"type": "tool", "name": value["function"]["name"]}
|
||||
|
||||
if _tool_choice is not None:
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "response_format" and "response_schema" in value:
|
||||
"""
|
||||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||
- You usually want to provide a single tool
|
||||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||
"""
|
||||
_tool_choice = None
|
||||
_tool_choice = {"name": "json_tool_call", "type": "tool"}
|
||||
|
||||
_tool = AnthropicMessagesTool(
|
||||
name="json_tool_call",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"values": value["response_schema"]}, # type: ignore
|
||||
},
|
||||
)
|
||||
|
||||
optional_params["tools"] = [_tool]
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
optional_params["json_mode"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
|
|
|
@ -1948,6 +1948,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
|
@ -128,6 +128,19 @@ def test_azure_ai_mistral_optional_params():
|
|||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_vertex_ai_llama_3_optional_params():
|
||||
litellm.vertex_llama3_models = ["meta/llama3-405b-instruct-maas"]
|
||||
litellm.drop_params = True
|
||||
optional_params = get_optional_params(
|
||||
model="meta/llama3-405b-instruct-maas",
|
||||
user="John",
|
||||
custom_llm_provider="vertex_ai",
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
)
|
||||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_azure_gpt_optional_params_gpt_vision():
|
||||
# for OpenAI, Azure all extra params need to get passed as extra_body to OpenAI python. We assert we actually set extra_body here
|
||||
optional_params = litellm.utils.get_optional_params(
|
||||
|
|
|
@ -3088,6 +3088,15 @@ def get_optional_params(
|
|||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models:
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = litellm.VertexAILlama3Config().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
## check if unsupported param passed in
|
||||
supported_params = get_supported_openai_params(
|
||||
|
@ -4189,6 +4198,9 @@ def get_supported_openai_params(
|
|||
return litellm.GoogleAIStudioGeminiConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "vertex_ai":
|
||||
if request_type == "chat_completion":
|
||||
if model.startswith("meta/"):
|
||||
return litellm.VertexAILlama3Config().get_supported_openai_params()
|
||||
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
|
|
|
@ -1948,6 +1948,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue