forked from phoenix/litellm-mirror
Litellm dev 11 21 2024 (#6837)
* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702) * test: test tool_call conversion when arguments is empty dict Fixes https://github.com/BerriAI/litellm/issues/6833 * fix(openai_like/handler.py): return more descriptive error message Fixes https://github.com/BerriAI/litellm/issues/6812 * test: skip overloaded model * docs(anthropic.md): update anthropic docs to show how to route to any new model * feat(groq/): fake stream when 'response_format' param is passed Groq doesn't support streaming when response_format is set * feat(groq/): add response_format support for groq Closes https://github.com/BerriAI/litellm/issues/6845 * fix(o1_handler.py): remove fake streaming for o1 Closes https://github.com/BerriAI/litellm/issues/6801 * build(model_prices_and_context_window.json): add groq llama3.2b model pricing Closes https://github.com/BerriAI/litellm/issues/6807 * fix(utils.py): fix handling ollama response format param Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485 * docs(sidebars.js): refactor chat endpoint placement * fix: fix linting errors * test: fix test * test: fix test * fix(openai_like/handler): handle max retries * fix(streaming_handler.py): fix streaming check for openai-compatible providers * test: update test * test: correctly handle model is overloaded error * test: update test * test: fix test * test: mark flaky test --------- Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
This commit is contained in:
parent
a7d5536872
commit
7e5085dc7b
31 changed files with 747 additions and 403 deletions
|
@ -1,7 +1,7 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Embedding Models
|
||||
# Embeddings
|
||||
|
||||
## Quick Start
|
||||
```python
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Image Generation
|
||||
# Images
|
||||
|
||||
## Quick Start
|
||||
|
||||
|
|
|
@ -10,6 +10,35 @@ LiteLLM supports all anthropic models.
|
|||
- `claude-2.1`
|
||||
- `claude-instant-1.2`
|
||||
|
||||
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | Claude is a highly performant, trustworthy, and intelligent AI platform built by Anthropic. Claude excels at tasks involving language, reasoning, analysis, coding, and more. |
|
||||
| Provider Route on LiteLLM | `anthropic/` (add this prefix to the model name, to route any requests to Anthropic - e.g. `anthropic/claude-3-5-sonnet-20240620`) |
|
||||
| Provider Doc | [Anthropic ↗](https://docs.anthropic.com/en/docs/build-with-claude/overview) |
|
||||
| API Endpoint for Provider | https://api.anthropic.com |
|
||||
| Supported Endpoints | `/chat/completions` |
|
||||
|
||||
|
||||
## Supported OpenAI Parameters
|
||||
|
||||
Check this in code, [here](../completion/input.md#translated-openai-params)
|
||||
|
||||
```
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"extra_headers",
|
||||
"parallel_tool_calls",
|
||||
"response_format",
|
||||
"user"
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
Anthropic API fails requests when `max_tokens` are not passed. Due to this litellm passes `max_tokens=4096` when no `max_tokens` are passed.
|
||||
|
@ -1006,20 +1035,3 @@ curl http://0.0.0.0:4000/v1/chat/completions \
|
|||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## All Supported OpenAI Params
|
||||
|
||||
```
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"extra_headers",
|
||||
"parallel_tool_calls",
|
||||
"response_format",
|
||||
"user"
|
||||
```
|
|
@ -199,46 +199,52 @@ const sidebars = {
|
|||
|
||||
],
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Guides",
|
||||
link: {
|
||||
type: "generated-index",
|
||||
title: "Chat Completions",
|
||||
description: "Details on the completion() function",
|
||||
slug: "/completion",
|
||||
},
|
||||
items: [
|
||||
"completion/input",
|
||||
"completion/provider_specific_params",
|
||||
"completion/json_mode",
|
||||
"completion/prompt_caching",
|
||||
"completion/audio",
|
||||
"completion/vision",
|
||||
"completion/predict_outputs",
|
||||
"completion/prefix",
|
||||
"completion/drop_params",
|
||||
"completion/prompt_formatting",
|
||||
"completion/output",
|
||||
"completion/usage",
|
||||
"exception_mapping",
|
||||
"completion/stream",
|
||||
"completion/message_trimming",
|
||||
"completion/function_call",
|
||||
"completion/model_alias",
|
||||
"completion/batching",
|
||||
"completion/mock_requests",
|
||||
"completion/reliable_completions",
|
||||
],
|
||||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Supported Endpoints",
|
||||
items: [
|
||||
{
|
||||
type: "category",
|
||||
label: "Chat",
|
||||
link: {
|
||||
type: "generated-index",
|
||||
title: "Chat Completions",
|
||||
description: "Details on the completion() function",
|
||||
slug: "/completion",
|
||||
},
|
||||
items: [
|
||||
"completion/input",
|
||||
"completion/provider_specific_params",
|
||||
"completion/json_mode",
|
||||
"completion/prompt_caching",
|
||||
"completion/audio",
|
||||
"completion/vision",
|
||||
"completion/predict_outputs",
|
||||
"completion/prefix",
|
||||
"completion/drop_params",
|
||||
"completion/prompt_formatting",
|
||||
"completion/output",
|
||||
"completion/usage",
|
||||
"exception_mapping",
|
||||
"completion/stream",
|
||||
"completion/message_trimming",
|
||||
"completion/function_call",
|
||||
"completion/model_alias",
|
||||
"completion/batching",
|
||||
"completion/mock_requests",
|
||||
"completion/reliable_completions",
|
||||
],
|
||||
},
|
||||
"embedding/supported_embedding",
|
||||
"image_generation",
|
||||
"audio_transcription",
|
||||
"text_to_speech",
|
||||
{
|
||||
type: "category",
|
||||
label: "Audio",
|
||||
"items": [
|
||||
"audio_transcription",
|
||||
"text_to_speech",
|
||||
]
|
||||
},
|
||||
"rerank",
|
||||
"assistants",
|
||||
"batches",
|
||||
|
|
|
@ -1793,7 +1793,7 @@ class CustomStreamWrapper:
|
|||
or self.custom_llm_provider == "bedrock"
|
||||
or self.custom_llm_provider == "triton"
|
||||
or self.custom_llm_provider == "watsonx"
|
||||
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
||||
or self.custom_llm_provider in litellm.openai_compatible_providers
|
||||
or self.custom_llm_provider in litellm._custom_providers
|
||||
):
|
||||
async for chunk in self.completion_stream:
|
||||
|
|
|
@ -17,22 +17,6 @@ from litellm.utils import CustomStreamWrapper
|
|||
|
||||
class OpenAIO1ChatCompletion(OpenAIChatCompletion):
|
||||
|
||||
async def mock_async_streaming(
|
||||
self,
|
||||
response: Any,
|
||||
model: Optional[str],
|
||||
logging_obj: Any,
|
||||
):
|
||||
model_response = await response
|
||||
completion_stream = MockResponseIterator(model_response=model_response)
|
||||
streaming_response = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider="openai",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streaming_response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model_response: ModelResponse,
|
||||
|
@ -54,7 +38,7 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
|
|||
custom_llm_provider: Optional[str] = None,
|
||||
drop_params: Optional[bool] = None,
|
||||
):
|
||||
stream: Optional[bool] = optional_params.pop("stream", False)
|
||||
# stream: Optional[bool] = optional_params.pop("stream", False)
|
||||
response = super().completion(
|
||||
model_response,
|
||||
timeout,
|
||||
|
@ -76,20 +60,4 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
|
|||
drop_params,
|
||||
)
|
||||
|
||||
if stream is True:
|
||||
if asyncio.iscoroutine(response):
|
||||
return self.mock_async_streaming(
|
||||
response=response, model=model, logging_obj=logging_obj # type: ignore
|
||||
)
|
||||
|
||||
completion_stream = MockResponseIterator(model_response=response)
|
||||
streaming_response = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider="openai",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
return streaming_response
|
||||
else:
|
||||
return response
|
||||
return response
|
||||
|
|
|
@ -6,55 +6,68 @@ from typing import Any, Callable, Optional, Union
|
|||
|
||||
from httpx._config import Timeout
|
||||
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.types.utils import CustomStreamingDecoder
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
from ...groq.chat.transformation import GroqChatConfig
|
||||
from ...OpenAI.openai import OpenAIChatCompletion
|
||||
from ...openai_like.chat.handler import OpenAILikeChatHandler
|
||||
|
||||
|
||||
class GroqChatCompletion(OpenAIChatCompletion):
|
||||
class GroqChatCompletion(OpenAILikeChatHandler):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def completion(
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_llm_provider: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
timeout: Union[float, Timeout],
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key: Optional[str],
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
model: Optional[str] = None,
|
||||
messages: Optional[list] = None,
|
||||
print_verbose: Optional[Callable[..., Any]] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
acompletion: bool = False,
|
||||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers: Optional[dict] = None,
|
||||
custom_prompt_dict: dict = {},
|
||||
client=None,
|
||||
organization: Optional[str] = None,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
drop_params: Optional[bool] = None,
|
||||
timeout: Optional[Union[float, Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
custom_endpoint: Optional[bool] = None,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False
|
||||
):
|
||||
messages = GroqChatConfig()._transform_messages(messages) # type: ignore
|
||||
|
||||
if optional_params.get("stream") is True:
|
||||
fake_stream = GroqChatConfig()._should_fake_stream(optional_params)
|
||||
else:
|
||||
fake_stream = False
|
||||
|
||||
return super().completion(
|
||||
model_response,
|
||||
timeout,
|
||||
optional_params,
|
||||
logging_obj,
|
||||
model,
|
||||
messages,
|
||||
print_verbose,
|
||||
api_key,
|
||||
api_base,
|
||||
acompletion,
|
||||
litellm_params,
|
||||
logger_fn,
|
||||
headers,
|
||||
custom_prompt_dict,
|
||||
client,
|
||||
organization,
|
||||
custom_llm_provider,
|
||||
drop_params,
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
custom_endpoint=custom_endpoint,
|
||||
streaming_decoder=streaming_decoder,
|
||||
fake_stream=fake_stream,
|
||||
)
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
|
||||
"""
|
||||
|
||||
import json
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
|
@ -9,7 +10,12 @@ from pydantic import BaseModel
|
|||
|
||||
import litellm
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionAssistantMessage,
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
|
@ -99,3 +105,69 @@ class GroqChatConfig(OpenAIGPTConfig):
|
|||
) # type: ignore
|
||||
dynamic_api_key = api_key or get_secret_str("GROQ_API_KEY")
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
def _should_fake_stream(self, optional_params: dict) -> bool:
|
||||
"""
|
||||
Groq doesn't support 'response_format' while streaming
|
||||
"""
|
||||
if optional_params.get("response_format") is not None:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _create_json_tool_call_for_response_format(
|
||||
self,
|
||||
json_schema: dict,
|
||||
):
|
||||
"""
|
||||
Handles creating a tool call for getting responses in JSON format.
|
||||
|
||||
Args:
|
||||
json_schema (Optional[dict]): The JSON schema the response should be in
|
||||
|
||||
Returns:
|
||||
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
|
||||
"""
|
||||
return ChatCompletionToolParam(
|
||||
type="function",
|
||||
function=ChatCompletionToolParamFunctionChunk(
|
||||
name="json_tool_call",
|
||||
parameters=json_schema,
|
||||
),
|
||||
)
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool = False,
|
||||
) -> dict:
|
||||
_response_format = non_default_params.get("response_format")
|
||||
if _response_format is not None and isinstance(_response_format, dict):
|
||||
json_schema: Optional[dict] = None
|
||||
if "response_schema" in _response_format:
|
||||
json_schema = _response_format["response_schema"]
|
||||
elif "json_schema" in _response_format:
|
||||
json_schema = _response_format["json_schema"]["schema"]
|
||||
"""
|
||||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||
- You usually want to provide a single tool
|
||||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||
"""
|
||||
if json_schema is not None:
|
||||
_tool_choice = {
|
||||
"type": "function",
|
||||
"function": {"name": "json_tool_call"},
|
||||
}
|
||||
_tool = self._create_json_tool_call_for_response_format(
|
||||
json_schema=json_schema,
|
||||
)
|
||||
optional_params["tools"] = [_tool]
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
optional_params["json_mode"] = True
|
||||
non_default_params.pop("response_format", None)
|
||||
return super().map_openai_params(
|
||||
non_default_params, optional_params, model, drop_params
|
||||
)
|
||||
|
|
|
@ -164,6 +164,30 @@ class OllamaConfig:
|
|||
"response_format",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self, optional_params: dict, non_default_params: dict
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["num_predict"] = value
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "seed":
|
||||
optional_params["seed"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "frequency_penalty":
|
||||
optional_params["repeat_penalty"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop"] = value
|
||||
if param == "response_format" and isinstance(value, dict):
|
||||
if value["type"] == "json_object":
|
||||
optional_params["format"] = "json"
|
||||
|
||||
return optional_params
|
||||
|
||||
def _supports_function_calling(self, ollama_model_info: dict) -> bool:
|
||||
"""
|
||||
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.
|
||||
|
|
|
@ -17,7 +17,9 @@ import httpx # type: ignore
|
|||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm import LlmProviders
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
|
@ -25,9 +27,19 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
)
|
||||
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
|
||||
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
|
||||
from litellm.utils import CustomStreamWrapper, EmbeddingResponse
|
||||
from litellm.utils import (
|
||||
Choices,
|
||||
CustomStreamWrapper,
|
||||
EmbeddingResponse,
|
||||
Message,
|
||||
ProviderConfigManager,
|
||||
TextCompletionResponse,
|
||||
Usage,
|
||||
convert_to_model_response_object,
|
||||
)
|
||||
|
||||
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
||||
from .transformation import OpenAILikeChatConfig
|
||||
|
||||
|
||||
async def make_call(
|
||||
|
@ -39,16 +51,22 @@ async def make_call(
|
|||
messages: list,
|
||||
logging_obj,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
if client is None:
|
||||
client = litellm.module_level_aclient
|
||||
|
||||
response = await client.post(api_base, headers=headers, data=data, stream=True)
|
||||
response = await client.post(
|
||||
api_base, headers=headers, data=data, stream=not fake_stream
|
||||
)
|
||||
|
||||
if streaming_decoder is not None:
|
||||
completion_stream: Any = streaming_decoder.aiter_bytes(
|
||||
response.aiter_bytes(chunk_size=1024)
|
||||
)
|
||||
elif fake_stream:
|
||||
model_response = ModelResponse(**response.json())
|
||||
completion_stream = MockResponseIterator(model_response=model_response)
|
||||
else:
|
||||
completion_stream = ModelResponseIterator(
|
||||
streaming_response=response.aiter_lines(), sync_stream=False
|
||||
|
@ -73,11 +91,12 @@ def make_sync_call(
|
|||
messages: list,
|
||||
logging_obj,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
if client is None:
|
||||
client = litellm.module_level_client # Create a new client if none provided
|
||||
|
||||
response = client.post(api_base, headers=headers, data=data, stream=True)
|
||||
response = client.post(api_base, headers=headers, data=data, stream=not fake_stream)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise OpenAILikeError(status_code=response.status_code, message=response.read())
|
||||
|
@ -86,6 +105,9 @@ def make_sync_call(
|
|||
completion_stream = streaming_decoder.iter_bytes(
|
||||
response.iter_bytes(chunk_size=1024)
|
||||
)
|
||||
elif fake_stream:
|
||||
model_response = ModelResponse(**response.json())
|
||||
completion_stream = MockResponseIterator(model_response=model_response)
|
||||
else:
|
||||
completion_stream = ModelResponseIterator(
|
||||
streaming_response=response.iter_lines(), sync_stream=True
|
||||
|
@ -126,8 +148,8 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
headers={},
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
) -> CustomStreamWrapper:
|
||||
|
||||
data["stream"] = True
|
||||
completion_stream = await make_call(
|
||||
client=client,
|
||||
|
@ -169,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
logger_fn=None,
|
||||
headers={},
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
json_mode: bool = False,
|
||||
) -> ModelResponse:
|
||||
if timeout is None:
|
||||
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
@ -181,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
|
@ -193,22 +214,26 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
response = ModelResponse(**response_json)
|
||||
|
||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
||||
|
||||
if base_model is not None:
|
||||
response._hidden_params["model"] = base_model
|
||||
return response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
|
@ -230,6 +255,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
streaming_decoder: Optional[
|
||||
CustomStreamingDecoder
|
||||
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
custom_endpoint = custom_endpoint or optional_params.pop(
|
||||
"custom_endpoint", None
|
||||
|
@ -243,13 +269,24 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
headers=headers,
|
||||
)
|
||||
|
||||
stream: bool = optional_params.get("stream", None) or False
|
||||
optional_params["stream"] = stream
|
||||
stream: bool = optional_params.pop("stream", None) or False
|
||||
extra_body = optional_params.pop("extra_body", {})
|
||||
json_mode = optional_params.pop("json_mode", None)
|
||||
optional_params.pop("max_retries", None)
|
||||
if not fake_stream:
|
||||
optional_params["stream"] = stream
|
||||
|
||||
if messages is not None and custom_llm_provider is not None:
|
||||
provider_config = ProviderConfigManager.get_provider_config(
|
||||
model=model, provider=LlmProviders(custom_llm_provider)
|
||||
)
|
||||
messages = provider_config._transform_messages(messages)
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
**extra_body,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
|
@ -288,6 +325,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
client=client,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
streaming_decoder=streaming_decoder,
|
||||
fake_stream=fake_stream,
|
||||
)
|
||||
else:
|
||||
return self.acompletion_function(
|
||||
|
@ -327,6 +365,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
messages=messages,
|
||||
logging_obj=logging_obj,
|
||||
streaming_decoder=streaming_decoder,
|
||||
fake_stream=fake_stream,
|
||||
)
|
||||
# completion_stream.__iter__()
|
||||
return CustomStreamWrapper(
|
||||
|
@ -344,7 +383,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
|
@ -356,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
|||
)
|
||||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
response = ModelResponse(**response_json)
|
||||
|
||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
||||
|
||||
if base_model is not None:
|
||||
response._hidden_params["model"] = base_model
|
||||
|
||||
return response
|
||||
|
|
98
litellm/llms/openai_like/chat/transformation.py
Normal file
98
litellm/llms/openai_like/chat/transformation.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
"""
|
||||
OpenAI-like chat completion transformation
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
|
||||
class OpenAILikeChatConfig(OpenAIGPTConfig):
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
|
||||
dynamic_api_key = (
|
||||
api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
@staticmethod
|
||||
def _convert_tool_response_to_message(
|
||||
message: ChatCompletionAssistantMessage, json_mode: bool
|
||||
) -> ChatCompletionAssistantMessage:
|
||||
"""
|
||||
if json_mode is true, convert the returned tool call response to a content with json str
|
||||
|
||||
e.g. input:
|
||||
|
||||
{"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
|
||||
|
||||
output:
|
||||
|
||||
{"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
|
||||
"""
|
||||
if not json_mode:
|
||||
return message
|
||||
|
||||
_tool_calls = message.get("tool_calls")
|
||||
|
||||
if _tool_calls is None or len(_tool_calls) != 1:
|
||||
return message
|
||||
|
||||
message["content"] = _tool_calls[0]["function"].get("arguments") or ""
|
||||
message["tool_calls"] = None
|
||||
|
||||
return message
|
||||
|
||||
@staticmethod
|
||||
def _transform_response(
|
||||
model: str,
|
||||
response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
stream: bool,
|
||||
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
|
||||
optional_params: dict,
|
||||
api_key: Optional[str],
|
||||
data: Union[dict, str],
|
||||
messages: List,
|
||||
print_verbose,
|
||||
encoding,
|
||||
json_mode: bool,
|
||||
custom_llm_provider: str,
|
||||
base_model: Optional[str],
|
||||
) -> ModelResponse:
|
||||
response_json = response.json()
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
if json_mode:
|
||||
for choice in response_json["choices"]:
|
||||
message = OpenAILikeChatConfig._convert_tool_response_to_message(
|
||||
choice.get("message"), json_mode
|
||||
)
|
||||
choice["message"] = message
|
||||
|
||||
returned_response = ModelResponse(**response_json)
|
||||
|
||||
returned_response.model = (
|
||||
custom_llm_provider + "/" + (returned_response.model or "")
|
||||
)
|
||||
|
||||
if base_model is not None:
|
||||
returned_response._hidden_params["model"] = base_model
|
||||
return returned_response
|
|
@ -62,7 +62,7 @@ class OpenAILikeEmbeddingHandler(OpenAILikeBase):
|
|||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
message=response.text if response else str(e),
|
||||
message=e.response.text if e.response else str(e),
|
||||
)
|
||||
except httpx.TimeoutException:
|
||||
raise OpenAILikeError(
|
||||
|
|
|
@ -943,17 +943,10 @@ def _gemini_tool_call_invoke_helper(
|
|||
name = function_call_params.get("name", "") or ""
|
||||
arguments = function_call_params.get("arguments", "")
|
||||
arguments_dict = json.loads(arguments)
|
||||
function_call: Optional[litellm.types.llms.vertex_ai.FunctionCall] = None
|
||||
for k, v in arguments_dict.items():
|
||||
inferred_protocol_value = infer_protocol_value(value=v)
|
||||
_field = litellm.types.llms.vertex_ai.Field(
|
||||
key=k, value={inferred_protocol_value: v}
|
||||
)
|
||||
_fields = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
|
||||
function_call = litellm.types.llms.vertex_ai.FunctionCall(
|
||||
name=name,
|
||||
args=_fields,
|
||||
)
|
||||
function_call = litellm.types.llms.vertex_ai.FunctionCall(
|
||||
name=name,
|
||||
args=arguments_dict,
|
||||
)
|
||||
return function_call
|
||||
|
||||
|
||||
|
@ -978,54 +971,26 @@ def convert_to_gemini_tool_call_invoke(
|
|||
},
|
||||
"""
|
||||
"""
|
||||
Gemini tool call invokes: - https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#submit-api-output
|
||||
content {
|
||||
role: "model"
|
||||
parts [
|
||||
Gemini tool call invokes:
|
||||
{
|
||||
"role": "model",
|
||||
"parts": [
|
||||
{
|
||||
function_call {
|
||||
name: "get_current_weather"
|
||||
args {
|
||||
fields {
|
||||
key: "unit"
|
||||
value {
|
||||
string_value: "fahrenheit"
|
||||
}
|
||||
}
|
||||
fields {
|
||||
key: "predicted_temperature"
|
||||
value {
|
||||
number_value: 45
|
||||
}
|
||||
}
|
||||
fields {
|
||||
key: "location"
|
||||
value {
|
||||
string_value: "Boston, MA"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
function_call {
|
||||
name: "get_current_weather"
|
||||
args {
|
||||
fields {
|
||||
key: "location"
|
||||
value {
|
||||
string_value: "San Francisco"
|
||||
}
|
||||
}
|
||||
}
|
||||
"functionCall": {
|
||||
"name": "get_current_weather",
|
||||
"args": {
|
||||
"unit": "fahrenheit",
|
||||
"predicted_temperature": 45,
|
||||
"location": "Boston, MA",
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
||||
}
|
||||
"""
|
||||
|
||||
"""
|
||||
- json.load the arguments
|
||||
- iterate through arguments -> create a FunctionCallArgs for each field
|
||||
- json.load the arguments
|
||||
"""
|
||||
try:
|
||||
_parts_list: List[litellm.types.llms.vertex_ai.PartType] = []
|
||||
|
@ -1128,16 +1093,8 @@ def convert_to_gemini_tool_call_result(
|
|||
|
||||
# We can't determine from openai message format whether it's a successful or
|
||||
# error call result so default to the successful result template
|
||||
inferred_content_value = infer_protocol_value(value=content_str)
|
||||
|
||||
_field = litellm.types.llms.vertex_ai.Field(
|
||||
key="content", value={inferred_content_value: content_str}
|
||||
)
|
||||
|
||||
_function_call_args = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
|
||||
|
||||
_function_response = litellm.types.llms.vertex_ai.FunctionResponse(
|
||||
name=name, response=_function_call_args # type: ignore
|
||||
name=name, response={"content": content_str} # type: ignore
|
||||
)
|
||||
|
||||
_part = litellm.types.llms.vertex_ai.PartType(function_response=_function_response)
|
||||
|
|
|
@ -57,6 +57,7 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
|
|||
|
||||
def completion(
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
|
@ -75,9 +76,8 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
|
|||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
custom_endpoint: Optional[bool] = None,
|
||||
streaming_decoder: Optional[
|
||||
CustomStreamingDecoder
|
||||
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
api_params = _get_api_params(optional_params, print_verbose=print_verbose)
|
||||
|
||||
|
|
|
@ -1495,8 +1495,8 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
timeout=timeout, # type: ignore
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
client=client, # pass AsyncOpenAI, OpenAI client
|
||||
organization=organization,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
encoding=encoding,
|
||||
)
|
||||
elif (
|
||||
model in litellm.open_ai_chat_completion_models
|
||||
|
@ -3182,6 +3182,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
|
|||
or custom_llm_provider == "azure_ai"
|
||||
or custom_llm_provider == "together_ai"
|
||||
or custom_llm_provider == "openai_like"
|
||||
or custom_llm_provider == "jina_ai"
|
||||
): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
|
|
@ -1745,7 +1745,8 @@
|
|||
"output_cost_per_token": 0.00000080,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-8b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1755,7 +1756,74 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-1b-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000004,
|
||||
"output_cost_per_token": 0.00000004,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-3b-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000006,
|
||||
"output_cost_per_token": 0.00000006,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-11b-text-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000018,
|
||||
"output_cost_per_token": 0.00000018,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-11b-vision-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000018,
|
||||
"output_cost_per_token": 0.00000018,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-90b-text-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-90b-vision-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-70b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1765,7 +1833,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-8b-instant": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1775,7 +1844,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-70b-versatile": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1785,7 +1855,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-405b-reasoning": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1795,7 +1866,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/mixtral-8x7b-32768": {
|
||||
"max_tokens": 32768,
|
||||
|
@ -1805,7 +1877,8 @@
|
|||
"output_cost_per_token": 0.00000024,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma-7b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1815,7 +1888,8 @@
|
|||
"output_cost_per_token": 0.00000007,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma2-9b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1825,7 +1899,8 @@
|
|||
"output_cost_per_token": 0.00000020,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1835,7 +1910,8 @@
|
|||
"output_cost_per_token": 0.00000089,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1845,7 +1921,8 @@
|
|||
"output_cost_per_token": 0.00000019,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"cerebras/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
|
|
|
@ -12,7 +12,6 @@ model_list:
|
|||
vertex_ai_project: "adroit-crow-413218"
|
||||
vertex_ai_location: "us-east5"
|
||||
|
||||
|
||||
router_settings:
|
||||
model_group_alias:
|
||||
"gpt-4-turbo": # Aliased model name
|
||||
|
|
|
@ -13,23 +13,14 @@ from typing_extensions import (
|
|||
)
|
||||
|
||||
|
||||
class Field(TypedDict):
|
||||
key: str
|
||||
value: Dict[str, Any]
|
||||
|
||||
|
||||
class FunctionCallArgs(TypedDict):
|
||||
fields: Field
|
||||
|
||||
|
||||
class FunctionResponse(TypedDict):
|
||||
name: str
|
||||
response: FunctionCallArgs
|
||||
response: Optional[dict]
|
||||
|
||||
|
||||
class FunctionCall(TypedDict):
|
||||
name: str
|
||||
args: FunctionCallArgs
|
||||
args: Optional[dict]
|
||||
|
||||
|
||||
class FileDataType(TypedDict):
|
||||
|
|
|
@ -1739,15 +1739,15 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
|||
|
||||
Does not raise error. Defaults to 'False'. Outputs logging.error.
|
||||
"""
|
||||
## GET LLM PROVIDER ##
|
||||
model, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if custom_llm_provider == "predibase": # predibase supports this globally
|
||||
return True
|
||||
|
||||
try:
|
||||
## GET LLM PROVIDER ##
|
||||
model, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if custom_llm_provider == "predibase": # predibase supports this globally
|
||||
return True
|
||||
|
||||
## GET MODEL INFO
|
||||
model_info = litellm.get_model_info(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -1755,12 +1755,17 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
|||
|
||||
if model_info.get("supports_response_schema", False) is True:
|
||||
return True
|
||||
return False
|
||||
except Exception:
|
||||
verbose_logger.error(
|
||||
f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
|
||||
## check if provider supports response schema globally
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
request_type="chat_completion",
|
||||
)
|
||||
return False
|
||||
if supported_params is not None and "response_schema" in supported_params:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def supports_function_calling(
|
||||
|
@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
|
|||
non_default_params["response_format"] = type_to_response_format_param(
|
||||
response_format=non_default_params["response_format"]
|
||||
)
|
||||
|
||||
if "tools" in non_default_params and isinstance(
|
||||
non_default_params, list
|
||||
): # fixes https://github.com/BerriAI/litellm/issues/4933
|
||||
|
@ -3259,24 +3265,14 @@ def get_optional_params( # noqa: PLR0915
|
|||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if max_tokens is not None:
|
||||
optional_params["num_predict"] = max_tokens
|
||||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
if temperature is not None:
|
||||
optional_params["temperature"] = temperature
|
||||
if seed is not None:
|
||||
optional_params["seed"] = seed
|
||||
if top_p is not None:
|
||||
optional_params["top_p"] = top_p
|
||||
if frequency_penalty is not None:
|
||||
optional_params["repeat_penalty"] = frequency_penalty
|
||||
if stop is not None:
|
||||
optional_params["stop"] = stop
|
||||
if response_format is not None and response_format["type"] == "json_object":
|
||||
optional_params["format"] = "json"
|
||||
optional_params = litellm.OllamaConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "ollama_chat":
|
||||
supported_params = litellm.OllamaChatConfig().get_supported_openai_params()
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
|
@ -3494,24 +3490,16 @@ def get_optional_params( # noqa: PLR0915
|
|||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
if temperature is not None:
|
||||
optional_params["temperature"] = temperature
|
||||
if max_tokens is not None:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if top_p is not None:
|
||||
optional_params["top_p"] = top_p
|
||||
if stream is not None:
|
||||
optional_params["stream"] = stream
|
||||
if stop is not None:
|
||||
optional_params["stop"] = stop
|
||||
if tools is not None:
|
||||
optional_params["tools"] = tools
|
||||
if tool_choice is not None:
|
||||
optional_params["tool_choice"] = tool_choice
|
||||
if response_format is not None:
|
||||
optional_params["response_format"] = response_format
|
||||
if seed is not None:
|
||||
optional_params["seed"] = seed
|
||||
optional_params = litellm.GroqChatConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
model=model,
|
||||
drop_params=(
|
||||
drop_params
|
||||
if drop_params is not None and isinstance(drop_params, bool)
|
||||
else False
|
||||
),
|
||||
)
|
||||
elif custom_llm_provider == "deepseek":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -6178,5 +6166,7 @@ class ProviderConfigManager:
|
|||
return litellm.OpenAIO1Config()
|
||||
elif litellm.LlmProviders.DEEPSEEK == provider:
|
||||
return litellm.DeepSeekChatConfig()
|
||||
elif litellm.LlmProviders.GROQ == provider:
|
||||
return litellm.GroqChatConfig()
|
||||
|
||||
return OpenAIGPTConfig()
|
||||
|
|
|
@ -1745,7 +1745,8 @@
|
|||
"output_cost_per_token": 0.00000080,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-8b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1755,7 +1756,74 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-1b-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000004,
|
||||
"output_cost_per_token": 0.00000004,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-3b-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000006,
|
||||
"output_cost_per_token": 0.00000006,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-11b-text-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000018,
|
||||
"output_cost_per_token": 0.00000018,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-11b-vision-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.00000018,
|
||||
"output_cost_per_token": 0.00000018,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-90b-text-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.2-90b-vision-preview": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 8192,
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-70b-8192": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1765,7 +1833,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-8b-instant": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1775,7 +1844,8 @@
|
|||
"output_cost_per_token": 0.00000008,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-70b-versatile": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1785,7 +1855,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama-3.1-405b-reasoning": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1795,7 +1866,8 @@
|
|||
"output_cost_per_token": 0.00000079,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/mixtral-8x7b-32768": {
|
||||
"max_tokens": 32768,
|
||||
|
@ -1805,7 +1877,8 @@
|
|||
"output_cost_per_token": 0.00000024,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma-7b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1815,7 +1888,8 @@
|
|||
"output_cost_per_token": 0.00000007,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/gemma2-9b-it": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1825,7 +1899,8 @@
|
|||
"output_cost_per_token": 0.00000020,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1835,7 +1910,8 @@
|
|||
"output_cost_per_token": 0.00000089,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||
"max_tokens": 8192,
|
||||
|
@ -1845,7 +1921,8 @@
|
|||
"output_cost_per_token": 0.00000019,
|
||||
"litellm_provider": "groq",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true
|
||||
"supports_function_calling": true,
|
||||
"supports_response_schema": true
|
||||
},
|
||||
"cerebras/llama3.1-8b": {
|
||||
"max_tokens": 128000,
|
||||
|
|
|
@ -49,7 +49,7 @@ class BaseLLMChatTest(ABC):
|
|||
)
|
||||
assert response is not None
|
||||
except litellm.InternalServerError:
|
||||
pass
|
||||
pytest.skip("Model is overloaded")
|
||||
|
||||
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
|
||||
assert response.choices[0].message.content is not None
|
||||
|
@ -92,7 +92,9 @@ class BaseLLMChatTest(ABC):
|
|||
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
|
||||
assert response.choices[0].message.content is not None
|
||||
|
||||
@pytest.mark.flaky(retries=6, delay=1)
|
||||
def test_json_response_pydantic_obj(self):
|
||||
litellm.set_verbose = True
|
||||
from pydantic import BaseModel
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
@ -119,6 +121,11 @@ class BaseLLMChatTest(ABC):
|
|||
response_format=TestModel,
|
||||
)
|
||||
assert res is not None
|
||||
|
||||
print(res.choices[0].message)
|
||||
|
||||
assert res.choices[0].message.content is not None
|
||||
assert res.choices[0].message.tool_calls is None
|
||||
except litellm.InternalServerError:
|
||||
pytest.skip("Model is overloaded")
|
||||
|
||||
|
@ -140,12 +147,15 @@ class BaseLLMChatTest(ABC):
|
|||
},
|
||||
]
|
||||
|
||||
response = litellm.completion(
|
||||
**base_completion_call_args,
|
||||
messages=messages,
|
||||
response_format={"type": "json_object"},
|
||||
stream=True,
|
||||
)
|
||||
try:
|
||||
response = litellm.completion(
|
||||
**base_completion_call_args,
|
||||
messages=messages,
|
||||
response_format={"type": "json_object"},
|
||||
stream=True,
|
||||
)
|
||||
except litellm.InternalServerError:
|
||||
pytest.skip("Model is overloaded")
|
||||
|
||||
print(response)
|
||||
|
||||
|
@ -161,6 +171,25 @@ class BaseLLMChatTest(ABC):
|
|||
assert content is not None
|
||||
assert len(content) > 0
|
||||
|
||||
@pytest.fixture
|
||||
def tool_call_no_arguments(self):
|
||||
return {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
|
||||
"function": {"name": "Get-FAQ", "arguments": "{}"},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
@abstractmethod
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
pass
|
||||
|
||||
@pytest.fixture
|
||||
def pdf_messages(self):
|
||||
import base64
|
||||
|
|
|
@ -697,6 +697,15 @@ class TestAnthropicCompletion(BaseLLMChatTest):
|
|||
assert _document_validation["source"]["media_type"] == "application/pdf"
|
||||
assert _document_validation["source"]["type"] == "base64"
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
from litellm.llms.prompt_templates.factory import (
|
||||
convert_to_anthropic_tool_invoke,
|
||||
)
|
||||
|
||||
result = convert_to_anthropic_tool_invoke([tool_call_no_arguments])
|
||||
print(result)
|
||||
|
||||
|
||||
def test_convert_tool_response_to_message_with_values():
|
||||
"""Test converting a tool response with 'values' key to a message"""
|
||||
|
|
|
@ -7,3 +7,7 @@ class TestDeepSeekChatCompletion(BaseLLMChatTest):
|
|||
return {
|
||||
"model": "deepseek/deepseek-chat",
|
||||
}
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
pass
|
||||
|
|
12
tests/llm_translation/test_groq.py
Normal file
12
tests/llm_translation/test_groq.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
from base_llm_unit_tests import BaseLLMChatTest
|
||||
|
||||
|
||||
class TestGroq(BaseLLMChatTest):
|
||||
def get_base_completion_call_args(self) -> dict:
|
||||
return {
|
||||
"model": "groq/llama-3.1-70b-versatile",
|
||||
}
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
pass
|
|
@ -32,3 +32,7 @@ class TestMistralCompletion(BaseLLMChatTest):
|
|||
def get_base_completion_call_args(self) -> dict:
|
||||
litellm.set_verbose = True
|
||||
return {"model": "mistral/mistral-small-latest"}
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
pass
|
||||
|
|
|
@ -952,3 +952,17 @@ def test_lm_studio_embedding_params():
|
|||
drop_params=True,
|
||||
)
|
||||
assert len(optional_params) == 0
|
||||
|
||||
|
||||
def test_ollama_pydantic_obj():
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ResponseFormat(BaseModel):
|
||||
x: str
|
||||
y: str
|
||||
|
||||
get_optional_params(
|
||||
model="qwen2:0.5b",
|
||||
custom_llm_provider="ollama",
|
||||
response_format=ResponseFormat,
|
||||
)
|
||||
|
|
|
@ -306,6 +306,8 @@ def test_multiple_function_call():
|
|||
)
|
||||
assert len(r.choices) > 0
|
||||
|
||||
print(mock_post.call_args.kwargs["json"])
|
||||
|
||||
assert mock_post.call_args.kwargs["json"] == {
|
||||
"contents": [
|
||||
{"role": "user", "parts": [{"text": "do test"}]},
|
||||
|
@ -313,28 +315,8 @@ def test_multiple_function_call():
|
|||
"role": "model",
|
||||
"parts": [
|
||||
{"text": "test"},
|
||||
{
|
||||
"function_call": {
|
||||
"name": "test",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "arg",
|
||||
"value": {"string_value": "test"},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{
|
||||
"function_call": {
|
||||
"name": "test2",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "arg",
|
||||
"value": {"string_value": "test2"},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"function_call": {"name": "test", "args": {"arg": "test"}}},
|
||||
{"function_call": {"name": "test2", "args": {"arg": "test2"}}},
|
||||
],
|
||||
},
|
||||
{
|
||||
|
@ -342,23 +324,13 @@ def test_multiple_function_call():
|
|||
{
|
||||
"function_response": {
|
||||
"name": "test",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {"string_value": "42"},
|
||||
}
|
||||
},
|
||||
"response": {"content": "42"},
|
||||
}
|
||||
},
|
||||
{
|
||||
"function_response": {
|
||||
"name": "test2",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {"string_value": "15"},
|
||||
}
|
||||
},
|
||||
"response": {"content": "15"},
|
||||
}
|
||||
},
|
||||
]
|
||||
|
@ -441,34 +413,16 @@ def test_multiple_function_call_changed_text_pos():
|
|||
assert len(resp.choices) > 0
|
||||
mock_post.assert_called_once()
|
||||
|
||||
print(mock_post.call_args.kwargs["json"]["contents"])
|
||||
|
||||
assert mock_post.call_args.kwargs["json"]["contents"] == [
|
||||
{"role": "user", "parts": [{"text": "do test"}]},
|
||||
{
|
||||
"role": "model",
|
||||
"parts": [
|
||||
{"text": "test"},
|
||||
{
|
||||
"function_call": {
|
||||
"name": "test",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "arg",
|
||||
"value": {"string_value": "test"},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{
|
||||
"function_call": {
|
||||
"name": "test2",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "arg",
|
||||
"value": {"string_value": "test2"},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"function_call": {"name": "test", "args": {"arg": "test"}}},
|
||||
{"function_call": {"name": "test2", "args": {"arg": "test2"}}},
|
||||
],
|
||||
},
|
||||
{
|
||||
|
@ -476,23 +430,13 @@ def test_multiple_function_call_changed_text_pos():
|
|||
{
|
||||
"function_response": {
|
||||
"name": "test2",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {"string_value": "15"},
|
||||
}
|
||||
},
|
||||
"response": {"content": "15"},
|
||||
}
|
||||
},
|
||||
{
|
||||
"function_response": {
|
||||
"name": "test",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {"string_value": "42"},
|
||||
}
|
||||
},
|
||||
"response": {"content": "42"},
|
||||
}
|
||||
},
|
||||
]
|
||||
|
@ -1354,3 +1298,20 @@ def test_vertex_embedding_url(model, expected_url):
|
|||
|
||||
assert url == expected_url
|
||||
assert endpoint == "predict"
|
||||
|
||||
|
||||
from base_llm_unit_tests import BaseLLMChatTest
|
||||
|
||||
|
||||
class TestVertexGemini(BaseLLMChatTest):
|
||||
def get_base_completion_call_args(self) -> dict:
|
||||
return {"model": "gemini/gemini-1.5-flash"}
|
||||
|
||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
||||
from litellm.llms.prompt_templates.factory import (
|
||||
convert_to_gemini_tool_call_invoke,
|
||||
)
|
||||
|
||||
result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
|
||||
print(result)
|
||||
|
|
|
@ -2867,6 +2867,7 @@ def test_gemini_function_call_parameter_in_messages():
|
|||
print(e)
|
||||
|
||||
# mock_client.assert_any_call()
|
||||
|
||||
assert {
|
||||
"contents": [
|
||||
{
|
||||
|
@ -2879,12 +2880,7 @@ def test_gemini_function_call_parameter_in_messages():
|
|||
{
|
||||
"function_call": {
|
||||
"name": "search",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "queries",
|
||||
"value": {"list_value": ["weather in boston"]},
|
||||
}
|
||||
},
|
||||
"args": {"queries": ["weather in boston"]},
|
||||
}
|
||||
}
|
||||
],
|
||||
|
@ -2895,12 +2891,7 @@ def test_gemini_function_call_parameter_in_messages():
|
|||
"function_response": {
|
||||
"name": "search",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {
|
||||
"string_value": "The current weather in Boston is 22°F."
|
||||
},
|
||||
}
|
||||
"content": "The current weather in Boston is 22°F."
|
||||
},
|
||||
}
|
||||
}
|
||||
|
@ -2935,6 +2926,7 @@ def test_gemini_function_call_parameter_in_messages():
|
|||
|
||||
|
||||
def test_gemini_function_call_parameter_in_messages_2():
|
||||
litellm.set_verbose = True
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
|
||||
_gemini_convert_messages_with_history,
|
||||
)
|
||||
|
@ -2958,6 +2950,7 @@ def test_gemini_function_call_parameter_in_messages_2():
|
|||
|
||||
returned_contents = _gemini_convert_messages_with_history(messages=messages)
|
||||
|
||||
print(f"returned_contents: {returned_contents}")
|
||||
assert returned_contents == [
|
||||
{
|
||||
"role": "user",
|
||||
|
@ -2970,12 +2963,7 @@ def test_gemini_function_call_parameter_in_messages_2():
|
|||
{
|
||||
"function_call": {
|
||||
"name": "search",
|
||||
"args": {
|
||||
"fields": {
|
||||
"key": "queries",
|
||||
"value": {"list_value": ["weather in boston"]},
|
||||
}
|
||||
},
|
||||
"args": {"queries": ["weather in boston"]},
|
||||
}
|
||||
},
|
||||
],
|
||||
|
@ -2986,12 +2974,7 @@ def test_gemini_function_call_parameter_in_messages_2():
|
|||
"function_response": {
|
||||
"name": "search",
|
||||
"response": {
|
||||
"fields": {
|
||||
"key": "content",
|
||||
"value": {
|
||||
"string_value": "The weather in Boston is 100 degrees."
|
||||
},
|
||||
}
|
||||
"content": "The weather in Boston is 100 degrees."
|
||||
},
|
||||
}
|
||||
}
|
||||
|
|
|
@ -67,7 +67,8 @@ def test_ollama_json_mode():
|
|||
assert converted_params == {
|
||||
"temperature": 0.5,
|
||||
"format": "json",
|
||||
}, f"{converted_params} != {'temperature': 0.5, 'format': 'json'}"
|
||||
"stream": False,
|
||||
}, f"{converted_params} != {'temperature': 0.5, 'format': 'json', 'stream': False}"
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
|
|
@ -64,6 +64,7 @@ async def test_batch_completion_multiple_models(mode):
|
|||
models_in_responses = []
|
||||
print(f"response: {response}")
|
||||
for individual_response in response:
|
||||
print(f"individual_response: {individual_response}")
|
||||
_model = individual_response["model"]
|
||||
models_in_responses.append(_model)
|
||||
|
||||
|
|
|
@ -749,6 +749,7 @@ def test_convert_model_response_object():
|
|||
("gemini/gemini-1.5-pro", True),
|
||||
("predibase/llama3-8b-instruct", True),
|
||||
("gpt-3.5-turbo", False),
|
||||
("groq/llama3-70b-8192", True),
|
||||
],
|
||||
)
|
||||
def test_supports_response_schema(model, expected_bool):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue