Litellm dev 11 21 2024 (#6837)

* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702)

* test: test tool_call conversion when arguments is empty dict

Fixes https://github.com/BerriAI/litellm/issues/6833

* fix(openai_like/handler.py): return more descriptive error message

Fixes https://github.com/BerriAI/litellm/issues/6812

* test: skip overloaded model

* docs(anthropic.md): update anthropic docs to show how to route to any new model

* feat(groq/): fake stream when 'response_format' param is passed

Groq doesn't support streaming when response_format is set

* feat(groq/): add response_format support for groq

Closes https://github.com/BerriAI/litellm/issues/6845

* fix(o1_handler.py): remove fake streaming for o1

Closes https://github.com/BerriAI/litellm/issues/6801

* build(model_prices_and_context_window.json): add groq llama3.2b model pricing

Closes https://github.com/BerriAI/litellm/issues/6807

* fix(utils.py): fix handling ollama response format param

Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485

* docs(sidebars.js): refactor chat endpoint placement

* fix: fix linting errors

* test: fix test

* test: fix test

* fix(openai_like/handler): handle max retries

* fix(streaming_handler.py): fix streaming check for openai-compatible providers

* test: update test

* test: correctly handle model is overloaded error

* test: update test

* test: fix test

* test: mark flaky test

---------

Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
This commit is contained in:
Krish Dholakia 2024-11-22 01:53:52 +05:30 committed by GitHub
parent a7d5536872
commit 7e5085dc7b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
31 changed files with 747 additions and 403 deletions

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Embedding Models
# Embeddings
## Quick Start
```python

View file

@ -1,4 +1,4 @@
# Image Generation
# Images
## Quick Start

View file

@ -10,6 +10,35 @@ LiteLLM supports all anthropic models.
- `claude-2.1`
- `claude-instant-1.2`
| Property | Details |
|-------|-------|
| Description | Claude is a highly performant, trustworthy, and intelligent AI platform built by Anthropic. Claude excels at tasks involving language, reasoning, analysis, coding, and more. |
| Provider Route on LiteLLM | `anthropic/` (add this prefix to the model name, to route any requests to Anthropic - e.g. `anthropic/claude-3-5-sonnet-20240620`) |
| Provider Doc | [Anthropic ↗](https://docs.anthropic.com/en/docs/build-with-claude/overview) |
| API Endpoint for Provider | https://api.anthropic.com |
| Supported Endpoints | `/chat/completions` |
## Supported OpenAI Parameters
Check this in code, [here](../completion/input.md#translated-openai-params)
```
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"extra_headers",
"parallel_tool_calls",
"response_format",
"user"
```
:::info
Anthropic API fails requests when `max_tokens` are not passed. Due to this litellm passes `max_tokens=4096` when no `max_tokens` are passed.
@ -1006,20 +1035,3 @@ curl http://0.0.0.0:4000/v1/chat/completions \
</TabItem>
</Tabs>
## All Supported OpenAI Params
```
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"extra_headers",
"parallel_tool_calls",
"response_format",
"user"
```

View file

@ -199,46 +199,52 @@ const sidebars = {
],
},
{
type: "category",
label: "Guides",
link: {
type: "generated-index",
title: "Chat Completions",
description: "Details on the completion() function",
slug: "/completion",
},
items: [
"completion/input",
"completion/provider_specific_params",
"completion/json_mode",
"completion/prompt_caching",
"completion/audio",
"completion/vision",
"completion/predict_outputs",
"completion/prefix",
"completion/drop_params",
"completion/prompt_formatting",
"completion/output",
"completion/usage",
"exception_mapping",
"completion/stream",
"completion/message_trimming",
"completion/function_call",
"completion/model_alias",
"completion/batching",
"completion/mock_requests",
"completion/reliable_completions",
],
},
{
type: "category",
label: "Supported Endpoints",
items: [
{
type: "category",
label: "Chat",
link: {
type: "generated-index",
title: "Chat Completions",
description: "Details on the completion() function",
slug: "/completion",
},
items: [
"completion/input",
"completion/provider_specific_params",
"completion/json_mode",
"completion/prompt_caching",
"completion/audio",
"completion/vision",
"completion/predict_outputs",
"completion/prefix",
"completion/drop_params",
"completion/prompt_formatting",
"completion/output",
"completion/usage",
"exception_mapping",
"completion/stream",
"completion/message_trimming",
"completion/function_call",
"completion/model_alias",
"completion/batching",
"completion/mock_requests",
"completion/reliable_completions",
],
},
"embedding/supported_embedding",
"image_generation",
"audio_transcription",
"text_to_speech",
{
type: "category",
label: "Audio",
"items": [
"audio_transcription",
"text_to_speech",
]
},
"rerank",
"assistants",
"batches",

View file

@ -1793,7 +1793,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "bedrock"
or self.custom_llm_provider == "triton"
or self.custom_llm_provider == "watsonx"
or self.custom_llm_provider in litellm.openai_compatible_endpoints
or self.custom_llm_provider in litellm.openai_compatible_providers
or self.custom_llm_provider in litellm._custom_providers
):
async for chunk in self.completion_stream:

View file

@ -17,22 +17,6 @@ from litellm.utils import CustomStreamWrapper
class OpenAIO1ChatCompletion(OpenAIChatCompletion):
async def mock_async_streaming(
self,
response: Any,
model: Optional[str],
logging_obj: Any,
):
model_response = await response
completion_stream = MockResponseIterator(model_response=model_response)
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="openai",
logging_obj=logging_obj,
)
return streaming_response
def completion(
self,
model_response: ModelResponse,
@ -54,7 +38,7 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
):
stream: Optional[bool] = optional_params.pop("stream", False)
# stream: Optional[bool] = optional_params.pop("stream", False)
response = super().completion(
model_response,
timeout,
@ -76,20 +60,4 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
drop_params,
)
if stream is True:
if asyncio.iscoroutine(response):
return self.mock_async_streaming(
response=response, model=model, logging_obj=logging_obj # type: ignore
)
completion_stream = MockResponseIterator(model_response=response)
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="openai",
logging_obj=logging_obj,
)
return streaming_response
else:
return response
return response

View file

@ -6,55 +6,68 @@ from typing import Any, Callable, Optional, Union
from httpx._config import Timeout
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.utils import CustomStreamingDecoder
from litellm.utils import ModelResponse
from ...groq.chat.transformation import GroqChatConfig
from ...OpenAI.openai import OpenAIChatCompletion
from ...openai_like.chat.handler import OpenAILikeChatHandler
class GroqChatCompletion(OpenAIChatCompletion):
class GroqChatCompletion(OpenAILikeChatHandler):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def completion(
self,
*,
model: str,
messages: list,
api_base: str,
custom_llm_provider: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
timeout: Union[float, Timeout],
print_verbose: Callable,
encoding,
api_key: Optional[str],
logging_obj,
optional_params: dict,
logging_obj: Any,
model: Optional[str] = None,
messages: Optional[list] = None,
print_verbose: Optional[Callable[..., Any]] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
acompletion: bool = False,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
custom_prompt_dict: dict = {},
client=None,
organization: Optional[str] = None,
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
timeout: Optional[Union[float, Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False
):
messages = GroqChatConfig()._transform_messages(messages) # type: ignore
if optional_params.get("stream") is True:
fake_stream = GroqChatConfig()._should_fake_stream(optional_params)
else:
fake_stream = False
return super().completion(
model_response,
timeout,
optional_params,
logging_obj,
model,
messages,
print_verbose,
api_key,
api_base,
acompletion,
litellm_params,
logger_fn,
headers,
custom_prompt_dict,
client,
organization,
custom_llm_provider,
drop_params,
model=model,
messages=messages,
api_base=api_base,
custom_llm_provider=custom_llm_provider,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
client=client,
custom_endpoint=custom_endpoint,
streaming_decoder=streaming_decoder,
fake_stream=fake_stream,
)

View file

@ -2,6 +2,7 @@
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
"""
import json
import types
from typing import List, Optional, Tuple, Union
@ -9,7 +10,12 @@ from pydantic import BaseModel
import litellm
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionAssistantMessage,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
)
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
@ -99,3 +105,69 @@ class GroqChatConfig(OpenAIGPTConfig):
) # type: ignore
dynamic_api_key = api_key or get_secret_str("GROQ_API_KEY")
return api_base, dynamic_api_key
def _should_fake_stream(self, optional_params: dict) -> bool:
"""
Groq doesn't support 'response_format' while streaming
"""
if optional_params.get("response_format") is not None:
return True
return False
def _create_json_tool_call_for_response_format(
self,
json_schema: dict,
):
"""
Handles creating a tool call for getting responses in JSON format.
Args:
json_schema (Optional[dict]): The JSON schema the response should be in
Returns:
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
"""
return ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name="json_tool_call",
parameters=json_schema,
),
)
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool = False,
) -> dict:
_response_format = non_default_params.get("response_format")
if _response_format is not None and isinstance(_response_format, dict):
json_schema: Optional[dict] = None
if "response_schema" in _response_format:
json_schema = _response_format["response_schema"]
elif "json_schema" in _response_format:
json_schema = _response_format["json_schema"]["schema"]
"""
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
if json_schema is not None:
_tool_choice = {
"type": "function",
"function": {"name": "json_tool_call"},
}
_tool = self._create_json_tool_call_for_response_format(
json_schema=json_schema,
)
optional_params["tools"] = [_tool]
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
non_default_params.pop("response_format", None)
return super().map_openai_params(
non_default_params, optional_params, model, drop_params
)

View file

@ -164,6 +164,30 @@ class OllamaConfig:
"response_format",
]
def map_openai_params(
self, optional_params: dict, non_default_params: dict
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["num_predict"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "seed":
optional_params["seed"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "frequency_penalty":
optional_params["repeat_penalty"] = value
if param == "stop":
optional_params["stop"] = value
if param == "response_format" and isinstance(value, dict):
if value["type"] == "json_object":
optional_params["format"] = "json"
return optional_params
def _supports_function_calling(self, ollama_model_info: dict) -> bool:
"""
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.

View file

@ -17,7 +17,9 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
from litellm import LlmProviders
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
@ -25,9 +27,19 @@ from litellm.llms.custom_httpx.http_handler import (
)
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
from litellm.utils import CustomStreamWrapper, EmbeddingResponse
from litellm.utils import (
Choices,
CustomStreamWrapper,
EmbeddingResponse,
Message,
ProviderConfigManager,
TextCompletionResponse,
Usage,
convert_to_model_response_object,
)
from ..common_utils import OpenAILikeBase, OpenAILikeError
from .transformation import OpenAILikeChatConfig
async def make_call(
@ -39,16 +51,22 @@ async def make_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_aclient
response = await client.post(api_base, headers=headers, data=data, stream=True)
response = await client.post(
api_base, headers=headers, data=data, stream=not fake_stream
)
if streaming_decoder is not None:
completion_stream: Any = streaming_decoder.aiter_bytes(
response.aiter_bytes(chunk_size=1024)
)
elif fake_stream:
model_response = ModelResponse(**response.json())
completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.aiter_lines(), sync_stream=False
@ -73,11 +91,12 @@ def make_sync_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_client # Create a new client if none provided
response = client.post(api_base, headers=headers, data=data, stream=True)
response = client.post(api_base, headers=headers, data=data, stream=not fake_stream)
if response.status_code != 200:
raise OpenAILikeError(status_code=response.status_code, message=response.read())
@ -86,6 +105,9 @@ def make_sync_call(
completion_stream = streaming_decoder.iter_bytes(
response.iter_bytes(chunk_size=1024)
)
elif fake_stream:
model_response = ModelResponse(**response.json())
completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.iter_lines(), sync_stream=True
@ -126,8 +148,8 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers={},
client: Optional[AsyncHTTPHandler] = None,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False,
) -> CustomStreamWrapper:
data["stream"] = True
completion_stream = await make_call(
client=client,
@ -169,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
json_mode: bool = False,
) -> ModelResponse:
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
@ -181,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
api_base, headers=headers, data=json.dumps(data), timeout=timeout
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@ -193,22 +214,26 @@ class OpenAILikeChatHandler(OpenAILikeBase):
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
logging_obj.post_call(
input=messages,
api_key="",
original_response=response_json,
additional_args={"complete_input_dict": data},
return OpenAILikeChatConfig._transform_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
optional_params=optional_params,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
encoding=encoding,
json_mode=json_mode,
custom_llm_provider=custom_llm_provider,
base_model=base_model,
)
response = ModelResponse(**response_json)
response.model = custom_llm_provider + "/" + (response.model or "")
if base_model is not None:
response._hidden_params["model"] = base_model
return response
def completion(
self,
*,
model: str,
messages: list,
api_base: str,
@ -230,6 +255,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
streaming_decoder: Optional[
CustomStreamingDecoder
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
fake_stream: bool = False,
):
custom_endpoint = custom_endpoint or optional_params.pop(
"custom_endpoint", None
@ -243,13 +269,24 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers=headers,
)
stream: bool = optional_params.get("stream", None) or False
optional_params["stream"] = stream
stream: bool = optional_params.pop("stream", None) or False
extra_body = optional_params.pop("extra_body", {})
json_mode = optional_params.pop("json_mode", None)
optional_params.pop("max_retries", None)
if not fake_stream:
optional_params["stream"] = stream
if messages is not None and custom_llm_provider is not None:
provider_config = ProviderConfigManager.get_provider_config(
model=model, provider=LlmProviders(custom_llm_provider)
)
messages = provider_config._transform_messages(messages)
data = {
"model": model,
"messages": messages,
**optional_params,
**extra_body,
}
## LOGGING
@ -288,6 +325,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
client=client,
custom_llm_provider=custom_llm_provider,
streaming_decoder=streaming_decoder,
fake_stream=fake_stream,
)
else:
return self.acompletion_function(
@ -327,6 +365,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
messages=messages,
logging_obj=logging_obj,
streaming_decoder=streaming_decoder,
fake_stream=fake_stream,
)
# completion_stream.__iter__()
return CustomStreamWrapper(
@ -344,7 +383,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@ -356,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
logging_obj.post_call(
input=messages,
api_key="",
original_response=response_json,
additional_args={"complete_input_dict": data},
return OpenAILikeChatConfig._transform_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
optional_params=optional_params,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
encoding=encoding,
json_mode=json_mode,
custom_llm_provider=custom_llm_provider,
base_model=base_model,
)
response = ModelResponse(**response_json)
response.model = custom_llm_provider + "/" + (response.model or "")
if base_model is not None:
response._hidden_params["model"] = base_model
return response

View file

@ -0,0 +1,98 @@
"""
OpenAI-like chat completion transformation
"""
import types
from typing import List, Optional, Tuple, Union
import httpx
from pydantic import BaseModel
import litellm
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
from litellm.types.utils import ModelResponse
from ....utils import _remove_additional_properties, _remove_strict_from_schema
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
class OpenAILikeChatConfig(OpenAIGPTConfig):
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
dynamic_api_key = (
api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
) # vllm does not require an api key
return api_base, dynamic_api_key
@staticmethod
def _convert_tool_response_to_message(
message: ChatCompletionAssistantMessage, json_mode: bool
) -> ChatCompletionAssistantMessage:
"""
if json_mode is true, convert the returned tool call response to a content with json str
e.g. input:
{"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
output:
{"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
"""
if not json_mode:
return message
_tool_calls = message.get("tool_calls")
if _tool_calls is None or len(_tool_calls) != 1:
return message
message["content"] = _tool_calls[0]["function"].get("arguments") or ""
message["tool_calls"] = None
return message
@staticmethod
def _transform_response(
model: str,
response: httpx.Response,
model_response: ModelResponse,
stream: bool,
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
optional_params: dict,
api_key: Optional[str],
data: Union[dict, str],
messages: List,
print_verbose,
encoding,
json_mode: bool,
custom_llm_provider: str,
base_model: Optional[str],
) -> ModelResponse:
response_json = response.json()
logging_obj.post_call(
input=messages,
api_key="",
original_response=response_json,
additional_args={"complete_input_dict": data},
)
if json_mode:
for choice in response_json["choices"]:
message = OpenAILikeChatConfig._convert_tool_response_to_message(
choice.get("message"), json_mode
)
choice["message"] = message
returned_response = ModelResponse(**response_json)
returned_response.model = (
custom_llm_provider + "/" + (returned_response.model or "")
)
if base_model is not None:
returned_response._hidden_params["model"] = base_model
return returned_response

View file

@ -62,7 +62,7 @@ class OpenAILikeEmbeddingHandler(OpenAILikeBase):
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
message=response.text if response else str(e),
message=e.response.text if e.response else str(e),
)
except httpx.TimeoutException:
raise OpenAILikeError(

View file

@ -943,17 +943,10 @@ def _gemini_tool_call_invoke_helper(
name = function_call_params.get("name", "") or ""
arguments = function_call_params.get("arguments", "")
arguments_dict = json.loads(arguments)
function_call: Optional[litellm.types.llms.vertex_ai.FunctionCall] = None
for k, v in arguments_dict.items():
inferred_protocol_value = infer_protocol_value(value=v)
_field = litellm.types.llms.vertex_ai.Field(
key=k, value={inferred_protocol_value: v}
)
_fields = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
function_call = litellm.types.llms.vertex_ai.FunctionCall(
name=name,
args=_fields,
)
function_call = litellm.types.llms.vertex_ai.FunctionCall(
name=name,
args=arguments_dict,
)
return function_call
@ -978,54 +971,26 @@ def convert_to_gemini_tool_call_invoke(
},
"""
"""
Gemini tool call invokes: - https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#submit-api-output
content {
role: "model"
parts [
Gemini tool call invokes:
{
"role": "model",
"parts": [
{
function_call {
name: "get_current_weather"
args {
fields {
key: "unit"
value {
string_value: "fahrenheit"
}
}
fields {
key: "predicted_temperature"
value {
number_value: 45
}
}
fields {
key: "location"
value {
string_value: "Boston, MA"
}
}
}
},
{
function_call {
name: "get_current_weather"
args {
fields {
key: "location"
value {
string_value: "San Francisco"
}
}
}
"functionCall": {
"name": "get_current_weather",
"args": {
"unit": "fahrenheit",
"predicted_temperature": 45,
"location": "Boston, MA",
}
}
}
]
]
}
"""
"""
- json.load the arguments
- iterate through arguments -> create a FunctionCallArgs for each field
- json.load the arguments
"""
try:
_parts_list: List[litellm.types.llms.vertex_ai.PartType] = []
@ -1128,16 +1093,8 @@ def convert_to_gemini_tool_call_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
inferred_content_value = infer_protocol_value(value=content_str)
_field = litellm.types.llms.vertex_ai.Field(
key="content", value={inferred_content_value: content_str}
)
_function_call_args = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
_function_response = litellm.types.llms.vertex_ai.FunctionResponse(
name=name, response=_function_call_args # type: ignore
name=name, response={"content": content_str} # type: ignore
)
_part = litellm.types.llms.vertex_ai.PartType(function_response=_function_response)

View file

@ -57,6 +57,7 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
def completion(
self,
*,
model: str,
messages: list,
api_base: str,
@ -75,9 +76,8 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
streaming_decoder: Optional[
CustomStreamingDecoder
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False,
):
api_params = _get_api_params(optional_params, print_verbose=print_verbose)

View file

@ -1495,8 +1495,8 @@ def completion( # type: ignore # noqa: PLR0915
timeout=timeout, # type: ignore
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
organization=organization,
custom_llm_provider=custom_llm_provider,
encoding=encoding,
)
elif (
model in litellm.open_ai_chat_completion_models
@ -3182,6 +3182,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
or custom_llm_provider == "azure_ai"
or custom_llm_provider == "together_ai"
or custom_llm_provider == "openai_like"
or custom_llm_provider == "jina_ai"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)

View file

@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-1b-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000004,
"output_cost_per_token": 0.00000004,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-3b-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000006,
"output_cost_per_token": 0.00000006,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-11b-text-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000018,
"output_cost_per_token": 0.00000018,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-11b-vision-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000018,
"output_cost_per_token": 0.00000018,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-90b-text-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-90b-vision-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,

View file

@ -12,7 +12,6 @@ model_list:
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
router_settings:
model_group_alias:
"gpt-4-turbo": # Aliased model name

View file

@ -13,23 +13,14 @@ from typing_extensions import (
)
class Field(TypedDict):
key: str
value: Dict[str, Any]
class FunctionCallArgs(TypedDict):
fields: Field
class FunctionResponse(TypedDict):
name: str
response: FunctionCallArgs
response: Optional[dict]
class FunctionCall(TypedDict):
name: str
args: FunctionCallArgs
args: Optional[dict]
class FileDataType(TypedDict):

View file

@ -1739,15 +1739,15 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
Does not raise error. Defaults to 'False'. Outputs logging.error.
"""
## GET LLM PROVIDER ##
model, custom_llm_provider, _, _ = get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
if custom_llm_provider == "predibase": # predibase supports this globally
return True
try:
## GET LLM PROVIDER ##
model, custom_llm_provider, _, _ = get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
if custom_llm_provider == "predibase": # predibase supports this globally
return True
## GET MODEL INFO
model_info = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
@ -1755,12 +1755,17 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
if model_info.get("supports_response_schema", False) is True:
return True
return False
except Exception:
verbose_logger.error(
f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
## check if provider supports response schema globally
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider=custom_llm_provider,
request_type="chat_completion",
)
return False
if supported_params is not None and "response_schema" in supported_params:
return True
return False
def supports_function_calling(
@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
non_default_params["response_format"] = type_to_response_format_param(
response_format=non_default_params["response_format"]
)
if "tools" in non_default_params and isinstance(
non_default_params, list
): # fixes https://github.com/BerriAI/litellm/issues/4933
@ -3259,24 +3265,14 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["num_predict"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature is not None:
optional_params["temperature"] = temperature
if seed is not None:
optional_params["seed"] = seed
if top_p is not None:
optional_params["top_p"] = top_p
if frequency_penalty is not None:
optional_params["repeat_penalty"] = frequency_penalty
if stop is not None:
optional_params["stop"] = stop
if response_format is not None and response_format["type"] == "json_object":
optional_params["format"] = "json"
optional_params = litellm.OllamaConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
elif custom_llm_provider == "ollama_chat":
supported_params = litellm.OllamaChatConfig().get_supported_openai_params()
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
@ -3494,24 +3490,16 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
if temperature is not None:
optional_params["temperature"] = temperature
if max_tokens is not None:
optional_params["max_tokens"] = max_tokens
if top_p is not None:
optional_params["top_p"] = top_p
if stream is not None:
optional_params["stream"] = stream
if stop is not None:
optional_params["stop"] = stop
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
if response_format is not None:
optional_params["response_format"] = response_format
if seed is not None:
optional_params["seed"] = seed
optional_params = litellm.GroqChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "deepseek":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
@ -6178,5 +6166,7 @@ class ProviderConfigManager:
return litellm.OpenAIO1Config()
elif litellm.LlmProviders.DEEPSEEK == provider:
return litellm.DeepSeekChatConfig()
elif litellm.LlmProviders.GROQ == provider:
return litellm.GroqChatConfig()
return OpenAIGPTConfig()

View file

@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-1b-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000004,
"output_cost_per_token": 0.00000004,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-3b-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000006,
"output_cost_per_token": 0.00000006,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-11b-text-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000018,
"output_cost_per_token": 0.00000018,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-11b-vision-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000018,
"output_cost_per_token": 0.00000018,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-90b-text-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.2-90b-vision-preview": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"max_output_tokens": 8192,
"input_cost_per_token": 0.0000009,
"output_cost_per_token": 0.0000009,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,

View file

@ -49,7 +49,7 @@ class BaseLLMChatTest(ABC):
)
assert response is not None
except litellm.InternalServerError:
pass
pytest.skip("Model is overloaded")
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
assert response.choices[0].message.content is not None
@ -92,7 +92,9 @@ class BaseLLMChatTest(ABC):
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
assert response.choices[0].message.content is not None
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_pydantic_obj(self):
litellm.set_verbose = True
from pydantic import BaseModel
from litellm.utils import supports_response_schema
@ -119,6 +121,11 @@ class BaseLLMChatTest(ABC):
response_format=TestModel,
)
assert res is not None
print(res.choices[0].message)
assert res.choices[0].message.content is not None
assert res.choices[0].message.tool_calls is None
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@ -140,12 +147,15 @@ class BaseLLMChatTest(ABC):
},
]
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format={"type": "json_object"},
stream=True,
)
try:
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format={"type": "json_object"},
stream=True,
)
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
print(response)
@ -161,6 +171,25 @@ class BaseLLMChatTest(ABC):
assert content is not None
assert len(content) > 0
@pytest.fixture
def tool_call_no_arguments(self):
return {
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
"function": {"name": "Get-FAQ", "arguments": "{}"},
"type": "function",
}
],
}
@abstractmethod
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
@pytest.fixture
def pdf_messages(self):
import base64

View file

@ -697,6 +697,15 @@ class TestAnthropicCompletion(BaseLLMChatTest):
assert _document_validation["source"]["media_type"] == "application/pdf"
assert _document_validation["source"]["type"] == "base64"
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
from litellm.llms.prompt_templates.factory import (
convert_to_anthropic_tool_invoke,
)
result = convert_to_anthropic_tool_invoke([tool_call_no_arguments])
print(result)
def test_convert_tool_response_to_message_with_values():
"""Test converting a tool response with 'values' key to a message"""

View file

@ -7,3 +7,7 @@ class TestDeepSeekChatCompletion(BaseLLMChatTest):
return {
"model": "deepseek/deepseek-chat",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass

View file

@ -0,0 +1,12 @@
from base_llm_unit_tests import BaseLLMChatTest
class TestGroq(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {
"model": "groq/llama-3.1-70b-versatile",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass

View file

@ -32,3 +32,7 @@ class TestMistralCompletion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
litellm.set_verbose = True
return {"model": "mistral/mistral-small-latest"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass

View file

@ -952,3 +952,17 @@ def test_lm_studio_embedding_params():
drop_params=True,
)
assert len(optional_params) == 0
def test_ollama_pydantic_obj():
from pydantic import BaseModel
class ResponseFormat(BaseModel):
x: str
y: str
get_optional_params(
model="qwen2:0.5b",
custom_llm_provider="ollama",
response_format=ResponseFormat,
)

View file

@ -306,6 +306,8 @@ def test_multiple_function_call():
)
assert len(r.choices) > 0
print(mock_post.call_args.kwargs["json"])
assert mock_post.call_args.kwargs["json"] == {
"contents": [
{"role": "user", "parts": [{"text": "do test"}]},
@ -313,28 +315,8 @@ def test_multiple_function_call():
"role": "model",
"parts": [
{"text": "test"},
{
"function_call": {
"name": "test",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test"},
}
},
}
},
{
"function_call": {
"name": "test2",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test2"},
}
},
}
},
{"function_call": {"name": "test", "args": {"arg": "test"}}},
{"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@ -342,23 +324,13 @@ def test_multiple_function_call():
{
"function_response": {
"name": "test",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "42"},
}
},
"response": {"content": "42"},
}
},
{
"function_response": {
"name": "test2",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "15"},
}
},
"response": {"content": "15"},
}
},
]
@ -441,34 +413,16 @@ def test_multiple_function_call_changed_text_pos():
assert len(resp.choices) > 0
mock_post.assert_called_once()
print(mock_post.call_args.kwargs["json"]["contents"])
assert mock_post.call_args.kwargs["json"]["contents"] == [
{"role": "user", "parts": [{"text": "do test"}]},
{
"role": "model",
"parts": [
{"text": "test"},
{
"function_call": {
"name": "test",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test"},
}
},
}
},
{
"function_call": {
"name": "test2",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test2"},
}
},
}
},
{"function_call": {"name": "test", "args": {"arg": "test"}}},
{"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@ -476,23 +430,13 @@ def test_multiple_function_call_changed_text_pos():
{
"function_response": {
"name": "test2",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "15"},
}
},
"response": {"content": "15"},
}
},
{
"function_response": {
"name": "test",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "42"},
}
},
"response": {"content": "42"},
}
},
]
@ -1354,3 +1298,20 @@ def test_vertex_embedding_url(model, expected_url):
assert url == expected_url
assert endpoint == "predict"
from base_llm_unit_tests import BaseLLMChatTest
class TestVertexGemini(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {"model": "gemini/gemini-1.5-flash"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
from litellm.llms.prompt_templates.factory import (
convert_to_gemini_tool_call_invoke,
)
result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
print(result)

View file

@ -2867,6 +2867,7 @@ def test_gemini_function_call_parameter_in_messages():
print(e)
# mock_client.assert_any_call()
assert {
"contents": [
{
@ -2879,12 +2880,7 @@ def test_gemini_function_call_parameter_in_messages():
{
"function_call": {
"name": "search",
"args": {
"fields": {
"key": "queries",
"value": {"list_value": ["weather in boston"]},
}
},
"args": {"queries": ["weather in boston"]},
}
}
],
@ -2895,12 +2891,7 @@ def test_gemini_function_call_parameter_in_messages():
"function_response": {
"name": "search",
"response": {
"fields": {
"key": "content",
"value": {
"string_value": "The current weather in Boston is 22°F."
},
}
"content": "The current weather in Boston is 22°F."
},
}
}
@ -2935,6 +2926,7 @@ def test_gemini_function_call_parameter_in_messages():
def test_gemini_function_call_parameter_in_messages_2():
litellm.set_verbose = True
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
_gemini_convert_messages_with_history,
)
@ -2958,6 +2950,7 @@ def test_gemini_function_call_parameter_in_messages_2():
returned_contents = _gemini_convert_messages_with_history(messages=messages)
print(f"returned_contents: {returned_contents}")
assert returned_contents == [
{
"role": "user",
@ -2970,12 +2963,7 @@ def test_gemini_function_call_parameter_in_messages_2():
{
"function_call": {
"name": "search",
"args": {
"fields": {
"key": "queries",
"value": {"list_value": ["weather in boston"]},
}
},
"args": {"queries": ["weather in boston"]},
}
},
],
@ -2986,12 +2974,7 @@ def test_gemini_function_call_parameter_in_messages_2():
"function_response": {
"name": "search",
"response": {
"fields": {
"key": "content",
"value": {
"string_value": "The weather in Boston is 100 degrees."
},
}
"content": "The weather in Boston is 100 degrees."
},
}
}

View file

@ -67,7 +67,8 @@ def test_ollama_json_mode():
assert converted_params == {
"temperature": 0.5,
"format": "json",
}, f"{converted_params} != {'temperature': 0.5, 'format': 'json'}"
"stream": False,
}, f"{converted_params} != {'temperature': 0.5, 'format': 'json', 'stream': False}"
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -64,6 +64,7 @@ async def test_batch_completion_multiple_models(mode):
models_in_responses = []
print(f"response: {response}")
for individual_response in response:
print(f"individual_response: {individual_response}")
_model = individual_response["model"]
models_in_responses.append(_model)

View file

@ -749,6 +749,7 @@ def test_convert_model_response_object():
("gemini/gemini-1.5-pro", True),
("predibase/llama3-8b-instruct", True),
("gpt-3.5-turbo", False),
("groq/llama3-70b-8192", True),
],
)
def test_supports_response_schema(model, expected_bool):