fix(completion()): add request_timeout as a param, fix claude error when request_timeout set

This commit is contained in:
ishaan-jaff 2023-10-05 19:05:27 -07:00
parent a724d4bed2
commit 8120477be4
5 changed files with 18 additions and 8 deletions

View file

@ -168,6 +168,7 @@ def completion(
logit_bias: dict = {},
user: str = "",
deployment_id = None,
request_timeout: Optional[int] = None,
# Optional liteLLM function params
**kwargs,
) -> ModelResponse:
@ -220,7 +221,7 @@ def completion(
metadata = kwargs.get('metadata', None)
fallbacks = kwargs.get('fallbacks', [])
######## end of unpacking kwargs ###########
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user"]
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "metadata", "fallbacks"]
default_params = openai_params + litellm_params
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
@ -260,6 +261,7 @@ def completion(
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user,
request_timeout=request_timeout,
deployment_id=deployment_id,
# params to identify the model
model=model,

View file

@ -40,7 +40,7 @@ def test_completion_claude():
try:
# test without max tokens
response = completion(
model="claude-instant-1", messages=messages
model="claude-instant-1", messages=messages, request_timeout=10,
)
# Add any assertions here to check the response
print(response)
@ -48,6 +48,8 @@ def test_completion_claude():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_claude()
def test_completion_claude_max_tokens():
try:
litellm.set_verbose = True
@ -339,13 +341,13 @@ def test_completion_cohere(): # commenting for now as the cohere endpoint is bei
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_cohere()
# test_completion_cohere()
def test_completion_openai():
try:
litellm.api_key = os.environ['OPENAI_API_KEY']
response = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=10)
response = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=10, request_timeout=10)
print("This is the response object\n", response)
print("\n\nThis is response ms:", response.response_ms)
@ -362,7 +364,7 @@ def test_completion_openai():
litellm.api_key = None
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_openai()
test_completion_openai()
def test_completion_openai_prompt():
@ -1018,7 +1020,7 @@ def test_completion_with_fallbacks():
def test_completion_ai21():
model_name = "j2-light"
try:
response = completion(model=model_name, messages=messages, max_tokens=100, temperature=0.8, logger_fn=logger_fn)
response = completion(model=model_name, messages=messages, max_tokens=100, temperature=0.8)
# Add any assertions here to check the response
print(response)
print(response.response_ms)

View file

@ -64,6 +64,8 @@ def timeout(timeout_duration: float = 0.0, exception_to_raise=Timeout):
local_timeout_duration = timeout_duration
if "force_timeout" in kwargs:
local_timeout_duration = kwargs["force_timeout"]
elif "request_timeout" in kwargs and kwargs["request_timeout"] is not None:
local_timeout_duration = kwargs["request_timeout"]
try:
value = await asyncio.wait_for(
func(*args, **kwargs), timeout=timeout_duration

View file

@ -947,6 +947,7 @@ def get_optional_params( # use the openai defaults
frequency_penalty=0,
logit_bias={},
user="",
request_timeout=None,
deployment_id=None,
model=None,
custom_llm_provider="",
@ -971,6 +972,7 @@ def get_optional_params( # use the openai defaults
"logit_bias":{},
"user":"",
"deployment_id":None,
"request_timeout":None,
"model":None,
"custom_llm_provider":"",
}
@ -991,6 +993,8 @@ def get_optional_params( # use the openai defaults
if k not in supported_params:
if k == "n" and n == 1: # langchain sends n=1 as a default value
pass
if k == "request_timeout": # litellm handles request time outs
pass
else:
unsupported_params.append(k)
if unsupported_params and not litellm.drop_params:
@ -1273,7 +1277,7 @@ def get_optional_params( # use the openai defaults
if stream:
optional_params["stream"] = stream
else: # assume passing in params for openai/azure openai
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id"]
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id", "request_timeout"]
_check_valid_arg(supported_params=supported_params)
optional_params = non_default_params
# if user passed in non-default kwargs for specific providers/models, pass them along

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "0.1.821"
version = "0.1.822"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"