forked from phoenix/litellm-mirror
feat(vertex_ai_llama.py): vertex ai llama3.1 api support
Initial working commit for vertex ai llama 3.1 api support
This commit is contained in:
parent
169da8b8d0
commit
83ef52e180
5 changed files with 355 additions and 19 deletions
270
litellm/llms/vertex_ai_llama.py
Normal file
270
litellm/llms/vertex_ai_llama.py
Normal file
|
@ -0,0 +1,270 @@
|
||||||
|
# What is this?
|
||||||
|
## Handler for calling llama 3.1 API on Vertex AI
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import types
|
||||||
|
import uuid
|
||||||
|
from enum import Enum
|
||||||
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import httpx # type: ignore
|
||||||
|
import requests # type: ignore
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||||
|
from litellm.types.llms.anthropic import (
|
||||||
|
AnthropicMessagesTool,
|
||||||
|
AnthropicMessagesToolChoice,
|
||||||
|
)
|
||||||
|
from litellm.types.llms.openai import (
|
||||||
|
ChatCompletionToolParam,
|
||||||
|
ChatCompletionToolParamFunctionChunk,
|
||||||
|
)
|
||||||
|
from litellm.types.utils import ResponseFormatChunk
|
||||||
|
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||||
|
|
||||||
|
from .base import BaseLLM
|
||||||
|
from .prompt_templates.factory import (
|
||||||
|
construct_tool_use_system_prompt,
|
||||||
|
contains_tag,
|
||||||
|
custom_prompt,
|
||||||
|
extract_between_tags,
|
||||||
|
parse_xml_params,
|
||||||
|
prompt_factory,
|
||||||
|
response_schema_prompt,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAIError(Exception):
|
||||||
|
def __init__(self, status_code, message):
|
||||||
|
self.status_code = status_code
|
||||||
|
self.message = message
|
||||||
|
self.request = httpx.Request(
|
||||||
|
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
||||||
|
)
|
||||||
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||||
|
super().__init__(
|
||||||
|
self.message
|
||||||
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAILlama3Config:
|
||||||
|
"""
|
||||||
|
Reference:https://docs.anthropic.com/claude/reference/messages_post
|
||||||
|
|
||||||
|
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
|
||||||
|
|
||||||
|
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
|
||||||
|
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
|
||||||
|
|
||||||
|
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
|
||||||
|
|
||||||
|
- `max_tokens` Required (integer) max tokens,
|
||||||
|
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||||
|
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
|
||||||
|
- `temperature` Optional (float) The amount of randomness injected into the response
|
||||||
|
- `top_p` Optional (float) Use nucleus sampling.
|
||||||
|
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
|
||||||
|
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
|
||||||
|
|
||||||
|
Note: Please make sure to modify the default parameters as required for your use case.
|
||||||
|
"""
|
||||||
|
|
||||||
|
max_tokens: Optional[int] = (
|
||||||
|
4096 # anthropic max - setting this doesn't impact response, but is required by anthropic.
|
||||||
|
)
|
||||||
|
system: Optional[str] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
top_p: Optional[float] = None
|
||||||
|
top_k: Optional[int] = None
|
||||||
|
stop_sequences: Optional[List[str]] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
anthropic_version: Optional[str] = None,
|
||||||
|
) -> None:
|
||||||
|
locals_ = locals()
|
||||||
|
for key, value in locals_.items():
|
||||||
|
if key == "max_tokens" and value is None:
|
||||||
|
value = self.max_tokens
|
||||||
|
if key != "self" and value is not None:
|
||||||
|
setattr(self.__class__, key, value)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config(cls):
|
||||||
|
return {
|
||||||
|
k: v
|
||||||
|
for k, v in cls.__dict__.items()
|
||||||
|
if not k.startswith("__")
|
||||||
|
and not isinstance(
|
||||||
|
v,
|
||||||
|
(
|
||||||
|
types.FunctionType,
|
||||||
|
types.BuiltinFunctionType,
|
||||||
|
classmethod,
|
||||||
|
staticmethod,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
and v is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_supported_openai_params(self):
|
||||||
|
return [
|
||||||
|
"max_tokens",
|
||||||
|
"tools",
|
||||||
|
"tool_choice",
|
||||||
|
"stream",
|
||||||
|
"stop",
|
||||||
|
"temperature",
|
||||||
|
"top_p",
|
||||||
|
"response_format",
|
||||||
|
]
|
||||||
|
|
||||||
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||||
|
for param, value in non_default_params.items():
|
||||||
|
if param == "max_tokens":
|
||||||
|
optional_params["max_tokens"] = value
|
||||||
|
if param == "tools":
|
||||||
|
optional_params["tools"] = value
|
||||||
|
if param == "tool_choice":
|
||||||
|
_tool_choice: Optional[AnthropicMessagesToolChoice] = None
|
||||||
|
if value == "auto":
|
||||||
|
_tool_choice = {"type": "auto"}
|
||||||
|
elif value == "required":
|
||||||
|
_tool_choice = {"type": "any"}
|
||||||
|
elif isinstance(value, dict):
|
||||||
|
_tool_choice = {"type": "tool", "name": value["function"]["name"]}
|
||||||
|
|
||||||
|
if _tool_choice is not None:
|
||||||
|
optional_params["tool_choice"] = _tool_choice
|
||||||
|
if param == "stream":
|
||||||
|
optional_params["stream"] = value
|
||||||
|
if param == "stop":
|
||||||
|
optional_params["stop_sequences"] = value
|
||||||
|
if param == "temperature":
|
||||||
|
optional_params["temperature"] = value
|
||||||
|
if param == "top_p":
|
||||||
|
optional_params["top_p"] = value
|
||||||
|
if param == "response_format" and "response_schema" in value:
|
||||||
|
"""
|
||||||
|
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||||
|
- You usually want to provide a single tool
|
||||||
|
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||||
|
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||||
|
"""
|
||||||
|
_tool_choice = None
|
||||||
|
_tool_choice = {"name": "json_tool_call", "type": "tool"}
|
||||||
|
|
||||||
|
_tool = AnthropicMessagesTool(
|
||||||
|
name="json_tool_call",
|
||||||
|
input_schema={
|
||||||
|
"type": "object",
|
||||||
|
"properties": {"values": value["response_schema"]}, # type: ignore
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
optional_params["tools"] = [_tool]
|
||||||
|
optional_params["tool_choice"] = _tool_choice
|
||||||
|
optional_params["json_mode"] = True
|
||||||
|
|
||||||
|
return optional_params
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAILlama3(BaseLLM):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def create_vertex_llama3_url(
|
||||||
|
self, vertex_location: str, vertex_project: str
|
||||||
|
) -> str:
|
||||||
|
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/openapi"
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
logging_obj,
|
||||||
|
optional_params: dict,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
headers: Optional[dict],
|
||||||
|
timeout: Union[float, httpx.Timeout],
|
||||||
|
vertex_project=None,
|
||||||
|
vertex_location=None,
|
||||||
|
vertex_credentials=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
acompletion: bool = False,
|
||||||
|
client=None,
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
import vertexai
|
||||||
|
from google.cloud import aiplatform
|
||||||
|
|
||||||
|
from litellm.llms.openai import OpenAIChatCompletion
|
||||||
|
from litellm.llms.vertex_httpx import VertexLLM
|
||||||
|
except Exception:
|
||||||
|
|
||||||
|
raise VertexAIError(
|
||||||
|
status_code=400,
|
||||||
|
message="""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`""",
|
||||||
|
)
|
||||||
|
|
||||||
|
if not (
|
||||||
|
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
||||||
|
):
|
||||||
|
raise VertexAIError(
|
||||||
|
status_code=400,
|
||||||
|
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
|
||||||
|
vertex_httpx_logic = VertexLLM()
|
||||||
|
|
||||||
|
access_token, project_id = vertex_httpx_logic._ensure_access_token(
|
||||||
|
credentials=vertex_credentials, project_id=vertex_project
|
||||||
|
)
|
||||||
|
|
||||||
|
openai_chat_completions = OpenAIChatCompletion()
|
||||||
|
|
||||||
|
## Load Config
|
||||||
|
# config = litellm.VertexAILlama3.get_config()
|
||||||
|
# for k, v in config.items():
|
||||||
|
# if k not in optional_params:
|
||||||
|
# optional_params[k] = v
|
||||||
|
|
||||||
|
## CONSTRUCT API BASE
|
||||||
|
stream: bool = optional_params.get("stream", False) or False
|
||||||
|
|
||||||
|
optional_params["stream"] = stream
|
||||||
|
|
||||||
|
api_base = self.create_vertex_llama3_url(
|
||||||
|
vertex_location=vertex_location or "us-central1",
|
||||||
|
vertex_project=vertex_project or project_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
return openai_chat_completions.completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
api_base=api_base,
|
||||||
|
api_key=access_token,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
acompletion=acompletion,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
client=client,
|
||||||
|
timeout=timeout,
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
raise VertexAIError(status_code=500, message=str(e))
|
|
@ -1189,7 +1189,7 @@ class VertexLLM(BaseLLM):
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
except httpx.HTTPStatusError as err:
|
except httpx.HTTPStatusError as err:
|
||||||
error_code = err.response.status_code
|
error_code = err.response.status_code
|
||||||
raise VertexAIError(status_code=error_code, message=response.text)
|
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||||
except httpx.TimeoutException:
|
except httpx.TimeoutException:
|
||||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||||
|
|
||||||
|
|
|
@ -120,6 +120,7 @@ from .llms.prompt_templates.factory import (
|
||||||
)
|
)
|
||||||
from .llms.text_completion_codestral import CodestralTextCompletion
|
from .llms.text_completion_codestral import CodestralTextCompletion
|
||||||
from .llms.triton import TritonChatCompletion
|
from .llms.triton import TritonChatCompletion
|
||||||
|
from .llms.vertex_ai_llama import VertexAILlama3
|
||||||
from .llms.vertex_httpx import VertexLLM
|
from .llms.vertex_httpx import VertexLLM
|
||||||
from .llms.watsonx import IBMWatsonXAI
|
from .llms.watsonx import IBMWatsonXAI
|
||||||
from .types.llms.openai import HttpxBinaryResponseContent
|
from .types.llms.openai import HttpxBinaryResponseContent
|
||||||
|
@ -156,6 +157,7 @@ triton_chat_completions = TritonChatCompletion()
|
||||||
bedrock_chat_completion = BedrockLLM()
|
bedrock_chat_completion = BedrockLLM()
|
||||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||||
vertex_chat_completion = VertexLLM()
|
vertex_chat_completion = VertexLLM()
|
||||||
|
vertex_llama_chat_completion = VertexAILlama3()
|
||||||
watsonxai = IBMWatsonXAI()
|
watsonxai = IBMWatsonXAI()
|
||||||
####### COMPLETION ENDPOINTS ################
|
####### COMPLETION ENDPOINTS ################
|
||||||
|
|
||||||
|
@ -2064,7 +2066,26 @@ def completion(
|
||||||
timeout=timeout,
|
timeout=timeout,
|
||||||
client=client,
|
client=client,
|
||||||
)
|
)
|
||||||
|
elif model.startswith("meta/"):
|
||||||
|
model_response = vertex_llama_chat_completion.completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
optional_params=new_params,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding,
|
||||||
|
vertex_location=vertex_ai_location,
|
||||||
|
vertex_project=vertex_ai_project,
|
||||||
|
vertex_credentials=vertex_credentials,
|
||||||
|
logging_obj=logging,
|
||||||
|
acompletion=acompletion,
|
||||||
|
headers=headers,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
timeout=timeout,
|
||||||
|
client=client,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
model_response = vertex_ai.completion(
|
model_response = vertex_ai.completion(
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -2478,28 +2499,25 @@ def completion(
|
||||||
return generator
|
return generator
|
||||||
|
|
||||||
response = generator
|
response = generator
|
||||||
|
|
||||||
elif custom_llm_provider == "triton":
|
elif custom_llm_provider == "triton":
|
||||||
api_base = (
|
api_base = litellm.api_base or api_base
|
||||||
litellm.api_base or api_base
|
|
||||||
)
|
|
||||||
model_response = triton_chat_completions.completion(
|
model_response = triton_chat_completions.completion(
|
||||||
api_base=api_base,
|
api_base=api_base,
|
||||||
timeout=timeout, # type: ignore
|
timeout=timeout, # type: ignore
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
optional_params=optional_params,
|
optional_params=optional_params,
|
||||||
logging_obj=logging,
|
logging_obj=logging,
|
||||||
stream=stream,
|
stream=stream,
|
||||||
acompletion=acompletion
|
acompletion=acompletion,
|
||||||
)
|
)
|
||||||
|
|
||||||
## RESPONSE OBJECT
|
## RESPONSE OBJECT
|
||||||
response = model_response
|
response = model_response
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
elif custom_llm_provider == "cloudflare":
|
elif custom_llm_provider == "cloudflare":
|
||||||
api_key = (
|
api_key = (
|
||||||
api_key
|
api_key
|
||||||
|
|
|
@ -895,6 +895,52 @@ async def test_gemini_pro_function_calling_httpx(model, sync_mode):
|
||||||
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||||
|
|
||||||
|
|
||||||
|
from litellm.tests.test_completion import response_format_tests
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"model", ["vertex_ai/meta/llama3-405b-instruct-maas"]
|
||||||
|
) # "vertex_ai",
|
||||||
|
@pytest.mark.parametrize("sync_mode", [True, False]) # "vertex_ai",
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_llama_3_httpx(model, sync_mode):
|
||||||
|
try:
|
||||||
|
load_vertex_ai_credentials()
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
||||||
|
},
|
||||||
|
# User asks for their name and weather in San Francisco
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Hello, what is your name and can you tell me the weather?",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
}
|
||||||
|
if sync_mode:
|
||||||
|
response = litellm.completion(**data)
|
||||||
|
else:
|
||||||
|
response = await litellm.acompletion(**data)
|
||||||
|
|
||||||
|
response_format_tests(response=response)
|
||||||
|
|
||||||
|
print(f"response: {response}")
|
||||||
|
except litellm.RateLimitError as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
if "429 Quota exceeded" in str(e):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||||
|
|
||||||
|
|
||||||
def vertex_httpx_mock_reject_prompt_post(*args, **kwargs):
|
def vertex_httpx_mock_reject_prompt_post(*args, **kwargs):
|
||||||
mock_response = MagicMock()
|
mock_response = MagicMock()
|
||||||
mock_response.status_code = 200
|
mock_response.status_code = 200
|
||||||
|
|
|
@ -5752,10 +5752,12 @@ def convert_to_model_response_object(
|
||||||
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
||||||
|
|
||||||
if "created" in response_object:
|
if "created" in response_object:
|
||||||
model_response_object.created = response_object["created"]
|
model_response_object.created = response_object["created"] or int(
|
||||||
|
time.time()
|
||||||
|
)
|
||||||
|
|
||||||
if "id" in response_object:
|
if "id" in response_object:
|
||||||
model_response_object.id = response_object["id"]
|
model_response_object.id = response_object["id"] or str(uuid.uuid4())
|
||||||
|
|
||||||
if "system_fingerprint" in response_object:
|
if "system_fingerprint" in response_object:
|
||||||
model_response_object.system_fingerprint = response_object[
|
model_response_object.system_fingerprint = response_object[
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue