LiteLLM Minor Fixes & Improvements (11/29/2024) (#6965)

* fix(factory.py): ensure tool call converts image url

Fixes https://github.com/BerriAI/litellm/issues/6953

* fix(transformation.py): support mp4 + pdf url's for vertex ai

Fixes https://github.com/BerriAI/litellm/issues/6936

* fix(http_handler.py): mask gemini api key in error logs

Fixes https://github.com/BerriAI/litellm/issues/6963

* docs(prometheus.md): update prometheus FAQs

* feat(auth_checks.py): ensure specific model access > wildcard model access

if wildcard model is in access group, but specific model is not - deny access

* fix(auth_checks.py): handle auth checks for team based model access groups

handles scenario where model access group used for wildcard models

* fix(internal_user_endpoints.py): support adding guardrails on `/user/update`

Fixes https://github.com/BerriAI/litellm/issues/6942

* fix(key_management_endpoints.py): fix prepare_metadata_fields helper

* fix: fix tests

* build(requirements.txt): bump openai dep version

fixes proxies argument

* test: fix tests

* fix(http_handler.py): fix error message masking

* fix(bedrock_guardrails.py): pass in prepped data

* test: fix test

* test: fix nvidia nim test

* fix(http_handler.py): return original response headers

* fix: revert maskedhttpstatuserror

* test: update tests

* test: cleanup test

* fix(key_management_endpoints.py): fix metadata field update logic

* fix(key_management_endpoints.py): maintain initial order of guardrails in key update

* fix(key_management_endpoints.py): handle prepare metadata

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix: fix key management errors

* fix(key_management_endpoints.py): update metadata

* test: update test

* refactor: add more debug statements

* test: skip flaky test

* test: fix test

* fix: fix test

* fix: fix update metadata logic

* fix: fix test

* ci(config.yml): change db url for e2e ui testing
This commit is contained in:
Krish Dholakia 2024-12-01 05:24:11 -08:00 committed by GitHub
parent bd59f18809
commit 859b47f08b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 1040 additions and 714 deletions

View file

@ -1 +1,3 @@
More tests under `litellm/litellm/tests/*`.
Unit tests for individual LLM providers.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.

File diff suppressed because one or more lines are too long

View file

@ -45,81 +45,59 @@ def test_map_azure_model_group(model_group_header, expected_model):
@pytest.mark.asyncio
@pytest.mark.respx
async def test_azure_ai_with_image_url(respx_mock: MockRouter):
async def test_azure_ai_with_image_url():
"""
Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
# Mock response based on the actual API response
mock_response = {
"id": "cmpl-53860ea1efa24d2883555bfec13d2254",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": None,
"message": {
"content": "The image displays a graphic with the text 'LiteLLM' in black",
"role": "assistant",
"refusal": None,
"audio": None,
"function_call": None,
"tool_calls": None,
},
}
],
"created": 1731801937,
"model": "phi35-vision-instruct",
"object": "chat.completion",
"usage": {
"completion_tokens": 69,
"prompt_tokens": 617,
"total_tokens": 686,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
}
# Mock the API request
mock_request = respx_mock.post(
"https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com"
).mock(return_value=httpx.Response(200, json=mock_response))
response = await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
},
],
client = AsyncOpenAI(
api_key="fake-api-key",
base_url="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
)
# Verify the request was made
assert mock_request.called
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
},
],
api_key="fake-api-key",
client=client,
)
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
# Check the request body
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"model": "Phi-3-5-vision-instruct-dcvov",
"messages": [
# Verify the request was made
mock_client.assert_called_once()
# Check the request body
request_body = mock_client.call_args.kwargs
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov"
assert request_body["messages"] == [
{
"role": "user",
"content": [
@ -132,7 +110,4 @@ async def test_azure_ai_with_image_url(respx_mock: MockRouter):
},
],
}
],
}
print(f"response: {response}")
]

View file

@ -13,6 +13,7 @@ load_dotenv()
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse
@ -41,56 +42,58 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter):
async def test_bedrock_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
url = f"https://bedrock-runtime.us-west-2.amazonaws.com/model/{_model}/converse"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229,"],
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockRouter):
async def test_anthropic_api_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models
"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
@ -103,30 +106,32 @@ async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockR
"usage": {"input_tokens": 2095, "output_tokens": 503},
}
client = HTTPHandler()
print("\n\nmock_response: ", mock_response)
url = f"https://api.anthropic.com/v1/messages"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs["json"]
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body == {
"messages": [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10,
"model": model.split("/")[-1],
}
def test_all_model_configs():

View file

@ -12,95 +12,78 @@ sys.path.insert(
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
@pytest.mark.respx
def test_completion_nvidia_nim(respx_mock: MockRouter):
def test_completion_nvidia_nim():
from openai import OpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="databricks/dbrx-instruct",
)
model_name = "nvidia_nim/databricks/dbrx-instruct"
client = OpenAI(
api_key="fake-api-key",
)
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/chat/completions"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
try:
response = completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
model=model_name,
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
presence_penalty=0.5,
frequency_penalty=0.1,
client=client,
)
except Exception as e:
print(e)
# Add any assertions here to check the response
print(response)
assert response.choices[0].message.content is not None
assert len(response.choices[0].message.content) > 0
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
"model": "databricks/dbrx-instruct",
"frequency_penalty": 0.1,
"presence_penalty": 0.5,
}
except litellm.exceptions.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
mock_response = EmbeddingResponse(
model="nvidia_nim/databricks/dbrx-instruct",
data=[
assert request_body["messages"] == [
{
"embedding": [0.1, 0.2, 0.3],
"index": 0,
}
],
usage=Usage(
prompt_tokens=10,
completion_tokens=0,
total_tokens=10,
),
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
},
]
assert request_body["model"] == "databricks/dbrx-instruct"
assert request_body["frequency_penalty"] == 0.1
assert request_body["presence_penalty"] == 0.5
def test_embedding_nvidia_nim():
litellm.set_verbose = True
from openai import OpenAI
client = OpenAI(
api_key="fake-api-key",
)
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/embeddings"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"input": "What is the meaning of life?",
"model": "nvidia/nv-embedqa-e5-v5",
"input_type": "passage",
"encoding_format": "base64",
}
with patch.object(client.embeddings.with_raw_response, "create") as mock_client:
try:
litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
client=client,
)
except Exception as e:
print(e)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["input"] == "What is the meaning of life?"
assert request_body["model"] == "nvidia/nv-embedqa-e5-v5"
assert request_body["extra_body"]["input_type"] == "passage"

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch
sys.path.insert(
0, os.path.abspath("../..")
@ -63,8 +63,7 @@ def test_openai_prediction_param():
@pytest.mark.asyncio
@pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
async def test_openai_prediction_param_mock():
"""
Tests that prediction parameter is correctly passed to the API
"""
@ -92,60 +91,36 @@ async def test_openai_prediction_param_mock(respx_mock: MockRouter):
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
)
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
except Exception as e:
print(f"Error: {e}")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
completion = await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
@pytest.mark.asyncio
@ -223,3 +198,73 @@ async def test_openai_prediction_param_with_caching():
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch, MagicMock
sys.path.insert(
0, os.path.abspath("../..")
@ -18,87 +18,75 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
async def test_o1_handle_system_role():
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
response = await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == "o1-preview"
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
async def test_o1_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == model
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
def test_litellm_responses():

View file

@ -1,94 +0,0 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,6 +6,7 @@ from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -68,13 +69,16 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
async def test_huggingface_text_completion_logprobs():
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
@ -91,46 +95,48 @@ async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
}
]
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val = AsyncMock()
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
)
return_val.json.return_value = mock_response
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
client=client,
)
print("response=", response)
# Verify the request
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},
"stream": False,
}
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
print("response=", response)
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify response structure
assert isinstance(response, TextCompletionResponse)
assert response.object == "text_completion"
assert response.model == "mistralai/Mistral-7B-v0.1"
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0
# Verify logprobs structure
choice = response.choices[0]
assert choice.finish_reason == "length"
assert choice.index == 0
assert isinstance(choice.logprobs.tokens, list)
assert isinstance(choice.logprobs.token_logprobs, list)
assert isinstance(choice.logprobs.text_offset, list)
assert isinstance(choice.logprobs.top_logprobs, list)
assert choice.logprobs.tokens == [",", "\n"]
assert choice.logprobs.token_logprobs == [-1.7626953, -1.7314453]
assert choice.logprobs.text_offset == [0, 1]
assert choice.logprobs.top_logprobs == [{}, {}]
# Verify usage
assert response.usage["completion_tokens"] > 0
assert response.usage["prompt_tokens"] > 0
assert response.usage["total_tokens"] > 0

View file

@ -1146,6 +1146,21 @@ def test_process_gemini_image():
mime_type="image/png", file_uri="https://example.com/image.png"
)
# Test HTTPS VIDEO URL
https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4")
print("https_result PNG", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4"
)
# Test HTTPS PDF URL
https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf")
print("https_result PDF", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="application/pdf",
file_uri="https://cloud-samples-data/pdf/animals.pdf",
)
# Test base64 image
base64_image = "..."
base64_result = _process_gemini_image(base64_image)

View file

@ -95,3 +95,107 @@ async def test_handle_failed_db_connection():
print("_handle_failed_db_connection_for_get_key_object got exception", exc_info)
assert str(exc_info.value) == "Failed to connect to DB"
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o-mini", True), ("openai/gpt-4o", False)],
)
@pytest.mark.asyncio
async def test_can_key_call_model(model, expect_to_work):
"""
If wildcard model + specific model is used, choose the specific model settings
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"llm_model_list": llm_model_list,
"valid_token": UserAPIKeyAuth(
models=["public-openai-models"],
),
"llm_router": router,
}
if expect_to_work:
await can_key_call_model(**args)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(**args)
print(e)
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
)
@pytest.mark.asyncio
async def test_can_team_call_model(model, expect_to_work):
from litellm.proxy.auth.auth_checks import model_in_access_group
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"team_models": ["public-openai-models"],
"llm_router": router,
}
if expect_to_work:
assert model_in_access_group(**args)
else:
assert not model_in_access_group(**args)

View file

@ -33,7 +33,7 @@ from litellm.router import Router
@pytest.mark.asyncio()
@pytest.mark.respx()
async def test_azure_tenant_id_auth(respx_mock: MockRouter):
async def test_aaaaazure_tenant_id_auth(respx_mock: MockRouter):
"""
Tests when we set tenant_id, client_id, client_secret they don't get sent with the request

View file

@ -1,128 +1,128 @@
#### What this tests ####
# This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
import sys, os, time, inspect, asyncio, traceback
from datetime import datetime
import pytest
# #### What this tests ####
# # This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
# import sys, os, time, inspect, asyncio, traceback
# from datetime import datetime
# import pytest
sys.path.insert(0, os.path.abspath("../.."))
import openai, litellm, uuid
from openai import AsyncAzureOpenAI
# sys.path.insert(0, os.path.abspath("../.."))
# import openai, litellm, uuid
# from openai import AsyncAzureOpenAI
client = AsyncAzureOpenAI(
api_key=os.getenv("AZURE_API_KEY"),
azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
api_version=os.getenv("AZURE_API_VERSION"),
)
# client = AsyncAzureOpenAI(
# api_key=os.getenv("AZURE_API_KEY"),
# azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
# api_version=os.getenv("AZURE_API_VERSION"),
# )
model_list = [
{
"model_name": "azure-test",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION"),
},
}
]
# model_list = [
# {
# "model_name": "azure-test",
# "litellm_params": {
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_base": os.getenv("AZURE_API_BASE"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# },
# }
# ]
router = litellm.Router(model_list=model_list) # type: ignore
# router = litellm.Router(model_list=model_list) # type: ignore
async def _openai_completion():
try:
start_time = time.time()
response = await client.chat.completions.create(
model="chatgpt-v-2",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"OpenAI Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def _openai_completion():
# try:
# start_time = time.time()
# response = await client.chat.completions.create(
# model="chatgpt-v-2",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "OpenAI Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def _router_completion():
try:
start_time = time.time()
response = await router.acompletion(
model="azure-test",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"Router Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time - first_token_ts,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def _router_completion():
# try:
# start_time = time.time()
# response = await router.acompletion(
# model="azure-test",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "Router Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time - first_token_ts,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def test_azure_completion_streaming():
"""
Test azure streaming call - measure on time to first (non-null) token.
"""
n = 3 # Number of concurrent tasks
## OPENAI AVG. TIME
tasks = [_openai_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_openai_time = total_time / 3
## ROUTER AVG. TIME
tasks = [_router_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_router_time = total_time / 3
## COMPARE
print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
assert avg_router_time < avg_openai_time + 0.5
# async def test_azure_completion_streaming():
# """
# Test azure streaming call - measure on time to first (non-null) token.
# """
# n = 3 # Number of concurrent tasks
# ## OPENAI AVG. TIME
# tasks = [_openai_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_openai_time = total_time / 3
# ## ROUTER AVG. TIME
# tasks = [_router_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_router_time = total_time / 3
# ## COMPARE
# print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
# assert avg_router_time < avg_openai_time + 0.5
# asyncio.run(test_azure_completion_streaming())
# # asyncio.run(test_azure_completion_streaming())

View file

@ -1146,7 +1146,9 @@ async def test_exception_with_headers_httpx(
except litellm.RateLimitError as e:
exception_raised = True
assert e.litellm_response_headers is not None
assert (
e.litellm_response_headers is not None
), "litellm_response_headers is None"
print("e.litellm_response_headers", e.litellm_response_headers)
assert int(e.litellm_response_headers["retry-after"]) == cooldown_time

View file

@ -212,7 +212,7 @@ async def test_bedrock_guardrail_triggered():
session,
"sk-1234",
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello do you like coffee?"}],
messages=[{"role": "user", "content": "Hello do you like coffee?"}],
guardrails=["bedrock-pre-guard"],
)
pytest.fail("Should have thrown an exception")

View file

@ -693,3 +693,47 @@ def test_personal_key_generation_check():
),
data=GenerateKeyRequest(),
)
def test_prepare_metadata_fields():
from litellm.proxy.management_endpoints.key_management_endpoints import (
prepare_metadata_fields,
)
new_metadata = {"test": "new"}
old_metadata = {"test": "test"}
args = {
"data": UpdateKeyRequest(
key_alias=None,
duration=None,
models=[],
spend=None,
max_budget=None,
user_id=None,
team_id=None,
max_parallel_requests=None,
metadata=new_metadata,
tpm_limit=None,
rpm_limit=None,
budget_duration=None,
allowed_cache_controls=[],
soft_budget=None,
config={},
permissions={},
model_max_budget={},
send_invite_email=None,
model_rpm_limit=None,
model_tpm_limit=None,
guardrails=None,
blocked=None,
aliases={},
key="sk-1qGQUJJTcljeaPfzgWRrXQ",
tags=None,
),
"non_default_values": {"metadata": new_metadata},
"existing_metadata": {"tags": None, **old_metadata},
}
non_default_values = prepare_metadata_fields(**args)
assert non_default_values == {"metadata": new_metadata}

View file

@ -1345,17 +1345,8 @@ def test_generate_and_update_key(prisma_client):
)
current_time = datetime.now(timezone.utc)
print(
"days between now and budget_reset_at",
(budget_reset_at - current_time).days,
)
# assert budget_reset_at is 30 days from now
assert (
abs(
(budget_reset_at - current_time).total_seconds() - 30 * 24 * 60 * 60
)
<= 10
)
assert 31 >= (budget_reset_at - current_time).days >= 29
# cleanup - delete key
delete_key_request = KeyRequest(keys=[generated_key])
@ -2926,7 +2917,6 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 100},
"model_rpm_limit": {"gpt-4": 2},
"tags": None,
}
# Update model tpm_limit and rpm_limit
@ -2950,7 +2940,6 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 200},
"model_rpm_limit": {"gpt-4": 3},
"tags": None,
}
@ -2990,7 +2979,6 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == {
"team": "litellm-team3",
"guardrails": ["aporia-pre-call"],
"tags": None,
}
# Update model tpm_limit and rpm_limit
@ -3012,7 +3000,6 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == {
"team": "litellm-team3",
"guardrails": ["aporia-pre-call", "aporia-post-call"],
"tags": None,
}

View file

@ -444,7 +444,7 @@ def test_foward_litellm_user_info_to_backend_llm_call():
def test_update_internal_user_params():
from litellm.proxy.management_endpoints.internal_user_endpoints import (
_update_internal_user_params,
_update_internal_new_user_params,
)
from litellm.proxy._types import NewUserRequest
@ -456,7 +456,7 @@ def test_update_internal_user_params():
data = NewUserRequest(user_role="internal_user", user_email="krrish3@berri.ai")
data_json = data.model_dump()
updated_data_json = _update_internal_user_params(data_json, data)
updated_data_json = _update_internal_new_user_params(data_json, data)
assert updated_data_json["models"] == litellm.default_internal_user_params["models"]
assert (
updated_data_json["max_budget"]
@ -530,7 +530,7 @@ def test_prepare_key_update_data():
data = UpdateKeyRequest(key="test_key", metadata=None)
updated_data = prepare_key_update_data(data, existing_key_row)
assert updated_data["metadata"] == None
assert updated_data["metadata"] is None
@pytest.mark.parametrize(

View file

@ -300,6 +300,7 @@ async def test_key_update(metadata):
get_key=key,
metadata=metadata,
)
print(f"updated_key['metadata']: {updated_key['metadata']}")
assert updated_key["metadata"] == metadata
await update_proxy_budget(session=session) # resets proxy spend
await chat_completion(session=session, key=key)

View file

@ -114,7 +114,7 @@ async def test_spend_logs():
async def get_predict_spend_logs(session):
url = f"http://0.0.0.0:4000/global/predict/spend/logs"
url = "http://0.0.0.0:4000/global/predict/spend/logs"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
data = {
"data": [
@ -155,6 +155,7 @@ async def get_spend_report(session, start_date, end_date):
return await response.json()
@pytest.mark.skip(reason="datetime in ci/cd gets set weirdly")
@pytest.mark.asyncio
async def test_get_predicted_spend_logs():
"""